
Untersuchungen des Phyto- und Zooplanktons schleswig-holsteinischer Seen 2013

Bericht

für das

Landesamt für Landwirtschaft, Umwelt und ländliche Räume, Schleswig-Holstein Hamburger Chaussee 25 24220 Flintbek

Beteiligte Personen und Institutionen:

Auftraggeber:

Landesamt für Landwirtschaft, Umwelt und ländliche Räume (LLUR), Schleswig-Holstein, Hamburger Chaussee 25, 24 220 Flintbek (Ansprechpartnerin: Dr. Mandy Bahnwart)

Auftragnehmer:

*Lim*Plan, Gewässer- und Landschaftsökologie, Dr. Wolfgang Arp, Otawistr. 19, 13351 Berlin (Tel. 030 / 450 274 18). Email: w.arp@limplan.de

Phytoplanktonuntersuchungen:

Dr. Wolfgang Arp (Lugolproben)

Dr. Juliane Kasten, Lüttig & Friends (Pelagialdiatomeen)

Profundaldiatomeenuntersuchungen:

Dr. Gabriele Hofmann

Zooplanktonuntersuchungen:

apl. Prof. Dr. Gerhard Maier (Büro für Gewässerökologie) Ute Michels (AquaLytis)

Berechnungen der Indices für die Bewertung mittels Phytoplankton (EU-WRRL)

Dr. Wolfgang Arp (PSI) & Dr. Juliane Kasten (DI-PROF)

Bericht:

Dr. Wolfgang Arp, apl. Prof. Dr. Gerhard Maier & Ute Michels

Fotos der Titelseite:

<u>links</u>: *Gonyostomum semen* im Pinnsee 2013 (Foto W. Arp) <u>rechts</u>: *Hexarthra mira* im Blankensee (Foto G. Maier)

Übersicht

Tabellenverzeichnis	5
Abbildungsverzeichnis	6
1. Zusammenfassung	9
2. Einleitung	14
3. Untersuchungsgewässer im Überblick	15
4. Methoden	17
4.1 Feldmethodik	17
4.2 Labormethodik	18
4.2.1 Phytoplanktonanalyse in der Lugolprobe	18
4.2.2 Pelagialdiatomeen	19
4.2.3 Analyse der Profundaldiatomeen	
4.2.4 Zooplanktonanalyse	
4.3 Bewertung mittels Phytoplankton (PSI) im Rahmen der EU-WRRL	24
5. Ergebnisse Plankton	25
5.1 Phyto- und Zooplankton im Überblick	25
5.2 Ermittlung des Diatomeen-Index (DI-PROF) und Bewertung	28
5.2.1 Ergebnisse zum DI-PROF-Ist	
5.2.2 Seenbewertung anhand des DI-PROF	29
5.3 Ergebnisse zum Phyto-Seen-Index (PSI)	29
5.4 Behlendorfer See	32
5.4.1 Ergebnisse Phytoplankton	33
5.4.2 Ergebnisse Zooplankton	
5.4.3 Diskussion Phyto- und Zooplankton	38
5.5 Blankensee	42
5.5.1 Ergebnisse Phytoplankton	
5.5.2 Ergebnisse Zooplankton	
5.5.3 Diskussion Phyto- und Zooplankton	
5.6 Bothkamper See	
5.6.1 Ergebnisse Phytoplankton	
5.6.2 Ergebnisse Zooplankton	
5.6.5 Diskussion Phyto- und Zoopiankton	
5.7 Bültsee	59
5.7.1 Ergebnisse Phytoplankton	
5.7.2 Ergebnisse Zooplankton	
5.7.3 Diskussion Phyto- und Zooplankton	63
5.8 Dobersdorfer See	
5.8.1 Ergebnisse Phytoplankton	66

-4-

5.8.2 Ergebnisse Zooplankton	
5.9 Garrensee	
5.9.1 Ergebnisse Phytoplankton	
5.9.2 Ergebnisse Zooplankton	
5.9.3 Diskussion Phyto- und Zooplankton	
5.10 Großer Binnensee	83
5.10.1 Ergebnisse Phytoplankton	83
5.10.2 Ergebnisse Zooplankton	
5.10.3 Diskussion Phyto- und Zooplankton	88
5.11 Großer Plöner See	91
5.11.1 Ergebnisse Phytoplankton	92
5.11.2 Ergebnisse Zooplankton	93
5.11.3 Diskussion Phyto- und Zooplankton	96
5.12 Großer Segeberger See	100
5.12.1 Ergebnisse Phytoplankton	
5.12.2 Ergebnisse Zooplankton	102
5.12.3 Diskussion Phyto- und Zooplankton	104
5.13 Ihlsee	108
5.13.1 Ergebnisse Phytoplankton	
5.13.2 Ergebnisse Zooplankton	
5.13.3 Diskussion Phyto- und Zooplankton	112
5.14 Neversdorfer See	115
5.14.1 Ergebnisse Phytoplankton	115
5.14.2 Ergebnisse Zooplankton	117
5.14.3 Diskussion Phyto- und Zooplankton	119
5.15 Pinnsee	122
5.15.1 Ergebnisse Phytoplankton	122
5.15.2 Ergebnisse Zooplankton	124
5.15.3 Diskussion Phyto- und Zooplankton	126
5.16 Ukleisee	130
5.16.1 Ergebnisse Phytoplankton	130
5.16.2 Ergebnisse Zooplankton	133
5.16.3 Diskussion Phyto- und Zooplankton	135
5.17 Vierer See	136
5.17.1 Ergebnisse Phytoplankton	137
5.17.2 Ergebnisse Zooplankton	138
5.17.3 Diskussion Phyto- und Zooplankton	141
6. Zusammenfassende Bewertung der untersuchten Seen	143
6.1 Seenvergleich Phytoplankton	143
6.2 Seenvergleich Zooplankton	
7. Literatur	153
8. Verwendete Bestimmungsliteratur Phyto- und Zooplankton	158

9. Dank	sagung	162
10. Ans	chrift der Verfasser	162
11. Anh	ang	163
11.1 M	essstellen, Probenahmetermine und Probenahmetiefen der analysierten Phytoplankton- Lugolproben des Freiwassers 2013	163
11.2 M	essstellen, Probenahmetermine und Probenahmetiefen der analysierten Zooplanktonproben 2013 im Überblick	166
11.3 Aı	tenlisten Phytoplankton Seen 2013	169
11.4 Aı	tenlisten Profundaldiatomeen Seen 2013	191
11.5 Aı	tenlisten Zooplankton Seen 2013	209
Tabell	enverzeichnis	
Tab. 1:	Auflistung der 14 Untersuchungsgewässer 2013 mit wichtigen Seekenndaten	15
Tab. 2:	Auflistung der 15 Messstellen mit Messstellen-Nr. und -Name des LLUR 2013	16
Tab. 3:	Trophiedaten von 15 Messstellen in 14 Seen für 2013, eingestuft nach LAWA (1999) als auch dem neuen Tool (2013).	16
Tab. 4:	Gewichtungsfaktoren zur Ermittlung des deutschen Phyto-Seen Index (PSI) für natürliche Seen des Tieflands (für Phytosee 5.1; RIEDMÜLLER et al. 2013).	24
Tab. 4a:	Indexwerte und entsprechende Einstufung in ökologische Zustandsklassen für die Teilmetrics und den PSI (aus RIEDMÜLLER et al. 2013)	24
Tab. 5:	Auswahl einiger relevanter biologischer, chemischer und physikalischer Parameter zur Charakterisierung der untersuchten Seen: Mittelwerte 2013	25
Tab. 6:	Istzustand des DI-PROF und die daraus resultierende ökolog. Zustandsklasse (Bewertung Di-Prof = Note) für 12 Seen in Schleswig-Holstein für das Jahr 2013	28
Tab. 7:	Gesamtbewertung (PSI ohne Di-Prof und mit Di-Prof) und mittlere Anzahl der Indikatoraten für 15 Messstellen in 14 Seen in Schleswig Holstein für das Jahr 2013.	30
Tab. 8:	PSI und Einzelmetrics für 15 Messstellen von 14 Seen in Schleswig-Holstein für das Jahr 2013	31
Tab. 9:	Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Behlendorfer See.	38
Tab. 10:	Vergleich wichtiger Parameter (Jahresmittel) des Zooplanktons im Vergleich 2013 mit früheren Jahren für den Behlendorfer See.	41
Tab. 11:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Blankensee.	47
Tab. 12:	Vergleich wichtiger Parameter (Jahresmittel) des Zooplanktons im Vergleich 2013 mit früheren Jahren für den Blankensee .	50
Tab. 13:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Bothkamper See, tiefste Stelle.	57
Tab. 14:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Bültsee.	64

Tab. 15:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Dobersdorfer See.	71
Tab. 16:	Vergleich wichtiger Parameter (Jahresmittel) im Vergleich 2013 mit früheren Jahren für den Dobersdorfer See.	74
Tab. 17:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Garrensee.	81
Tab. 18:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Gr. Binnensee.	89
Tab. 19:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Gr. Plöner See, Südteil.	97
Tab. 20:	Vergleich wichtiger Parameter (Jahresmittel) des Zooplanktons im Vergleich 2013 mit früheren Jahren für den Gr. Plöner See, Südteil.	100
Tab. 21:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Gr. Segeberger See.	105
Tab. 22:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Ihlsee.	113
Tab. 23:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Neversdorfer See.	120
Tab. 24:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Pinnsee.	128
Tab. 25:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Ukleisee.	135
Tab. 26:	Vergleich wichtiger Parameter (Jahresmittel) des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Vierer See.	141
Tab. 27:	Zooplankton-Parameter: Zusammenfassende Charakterisierung der Seen 2013	150
Abbile	dungsverzeichnis	
Abb. 1:	Vergleich der Phytoplankton-Biovolumina und Chlorophyll- <i>a</i> - Konzentrationen von 106 Proben aus 14 Seen (15 Messstellen) in Schleswig-Holstein aus dem Jahr 2013	26
Abb. 2:	Durchschnittliche Abundanz-Anteile (links) sowie durchschnittliche Biomassen-Anteile (rechts) der 3 taxonomischen Großgruppen. Mittelwert von allen 2013 untersuchten Seen	27
Abb. 3:	Phytoplankton-Großgruppen und Chl.a des Behlendorfer Sees 2013	35
Abb. 4:	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Behlendorfer See 2013	37
Abb. 5:	Phytoplankton-Großgruppen und Chl.a des Behlendorfer Sees 2004 und 2010- 2013.	39
Abb. 6:	Phytoplankton-Großgruppen und Chl.a des Blankensees 2013.	44
Abb. 7:	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Blankensee 2013.	46
Abb. 8:	Phytoplankton-Großgruppen und Chl.a des Blankensees 2006 und 2010-2013	48

Abb. 9:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Bothkamper Sees 2013, 2 Probestellen	53
Abb. 10:	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Bothkamper See, tiefste Stelle, 2013.	55
Abb. 11:	Phytoplankton-Großgruppen und Chl.a des Bothkamper Sees, tiefste Stelle, 2006 und 2013.	57
Abb. 12:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Bültsees 2013	61
Abb. 13:	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Bültsee, tiefste Stelle, 2013	62
Abb. 14:	Phytoplankton-Großgruppen und Chl.a des Bültsees 2008 und 2013.	64
Abb. 15:	Phytoplankton-Großgruppen und Chl.a des Dobersdorfer Sees 2013.	68
Abb. 16:	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Dobersdorfer See 2013	70
Abb. 17:	Jahresmittel verschiedener Parameter und Indices des Phytoplanktons und der Trophie im Dobersdorfer See 1999 – 2013	73
Abb. 17a	: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Garrensees 2013	77
Abb. 17b	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Garrensee 2013	79
Abb. 18:	Phytoplankton-Großgruppen und Chl.a des Garrensees 2008, 2009 und 2013	81
Abb. 19:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Gr. Binnensees 2013	85
Abb. 20:	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Gr. Binnensee 2013	87
Abb. 21:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Gr. Binnensees 2007 und 2013.	89
Abb. 22:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Großen Plöner Sees 2013.	93
Abb. 23:	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Gr. Plöner See 2013.	95
Abb. 24:	Jahresmittel verschiedener Parameter und Indices des Phytoplanktons und der Trophie im Gr. Plöner See 1998 – 2013.	98
Abb. 25:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Großen Segeberger Sees 2013.	102
Abb. 26:	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Gr. Segeberger See 2013	104
Abb. 27:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Großen Segeberger Sees 2004, 2010 und 2013.	106
Abb. 28:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Ihlsees 2013	110
Abb. 29:	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Ihlsee 2013.	112
Abb. 30:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Ihlsees 2008 und 2013	114
Abb. 31:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Neversdorfer Sees 2013.	117
Abb. 32:	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Neversdorfer See 2013.	119

-7-

Abb. 33:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Neversdorfer Sees 2007 und 2013	121
Abb. 34:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Pinnsees 2013	124
Abb. 35:	Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Pinnsee 2013.	126
Abb. 36:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Pinnsees 2003, 2004 und 2013.	128
Abb. 36a	: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Ukleisees 2013	132
Abb. 37:	Biomasse (in μg Trockenmasse $L^{\text{-1}}$) und prozentuale Anteile der taxonomischen Hauptgruppen des Zooplanktons im Ukleisee im Jahr 2013.	134
Abb. 38:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Vierer Sees 2013	138
Abb. 39:	Biomasse (in μg Trockenmasse $L^{\text{-1}}$) und prozentuale Anteile der taxonomischen Hauptgruppen des Zooplanktons im Vierersee im Jahr 2013	140
Abb. 40:	Biovolumen der Phytoplankton-Großgruppen und Chl.a des Vierer Sees 2004 und 2013.	142
Abb. 41:	Untersuchte Seen 2013 im Vergleich. Oben : Jahresmittel Gesamt-Phosphor (1m) für jede Messstelle, aufsteigend. Mitte : Jahresmittel Chl.a der integrierten Zone. Unten : Jahresmittel Zooplankton-TG	144
Abb. 42:	Reihung der Seen nach der Anzahl der nachgewiesenen Metazooplankton-Taxa (Rotatorien + Crustaceen) Seen SH. 2013	145
Abb. 43:	Reihung der Seen nach der durchschnittlichen Abundanz der Metazooplankton- Großgruppen Seen: SH. 2013.	146
Abb. 44:	Reihung der Seen nach der mittleren Trockenmasse in der Vegetationsperiode: Seen SH. 2013.	147
Abb. 45:	Mittlerer Cladoceren Größenindex (GIC) im Sommer 2013 in Seen S-H. (Juli, August)	148
Abb. 46:	Reihung der Seen nach dem Verhältnis von Zooplankton zu Phytoplankton-Masse; Mittel im Sommer (Seen SH. 2013).	149
Abb. 47:	Phytoplankton-Biovolumen vs. Zooplankton-Trockenmasse (Pearson-Korrelation). Mittel über die Vegetationsperiode (Seen SH. 2013).	149

-8-

1. Zusammenfassung

Im Rahmen der Umsetzung der EU-Wasserrahmenrichtlinie (EU-WRRL) sowie des bundesweiten Seenmonitoring-Programms wurde 2013 in Schleswig-Holstein das Phyto- und Zooplankton von 14 Seen (15 Messstellen) untersucht. Von allen Seen wurden im Zeitraum März/April bis Oktober/November in nahezu monatlichen Abständen aus unterschiedlichen Tiefen Schöpfproben als Mischproben für die Phytoplanktonanalyse entnommen. Des Weiteren wurden Netzproben für die Zooplanktonanalyse entnommen. Zudem wurde beim Großteil der Messstellen einmalig an der tiefsten Stelle eine Probe aus dem annähernd obersten Zentimeter des Profundalschlamms entnommen und auf die planktischen und benthischen Diatomeen untersucht.

Alle 14 Seen wurden anhand der Qualitätskomponente (QK) Phytoplankton im Rahmen der EU-WRRL bewertet (Phyto-See-Index = PSI, mit software PHYTOSEE 5.1). 2 Seen (Pinnsee und Garrensee) wurden testweise eingestuft, da ihr Seetyp nicht in der Seentypologie der natürlichen Seen des Tieflands enthalten ist. Von den übrigen 12 Seen mit 13 Messstellen wurden auf der Basis des Zeitraums März bis November 2 Seen "sehr gut", 3 Seen "gut", 5 Seen "mäßig", 1 See "unbefriedigend" und 1 See (2 Messstellen) "schlecht" bewertet.

Vor dem Hintergrund früherer Untersuchungen wurden die ermittelten Daten des Jahres 2013 eingeordnet und bewertet (nach Seename sortiert):

- Der **Behlendorfer See** (Planktontyp 13), der Ende 2009 restauriert wurde (Bentophos-Behandlung), wird seit 2011 anhand des Phytoplanktons "gut" bewertet. Auch 2013 waren wie 2012 die Planktongehalte niedrig und die dominanten Algengruppen und –taxa divers. Beim Zooplankton sind Cladoceren insgesamt die dominante Gruppe und effektive Filtrierer (Daphnien) sind im Hochsommer und Herbst stark vertreten. Der Umsatz von Phytoin Zooplanktonmasse hat sich gegenüber 2011 etwas verschlechtert, ist aber immer noch im günstigen Bereich (Ausnahme Juli). Der GIC liegt im mittleren Bereich, was allenfalls moderaten Fraßdruck durch Fische indiziert. Die Zooplankton-Biomasse stuft den Seen (wie im Jahr 2010) in den mesotrophen Bereich ein.
- Der sehr flache und makrophytendominierte **Blankensee** ist als kalkarmer See ein Sondertyp. Die Trophie des Sees hat sich im vierten Jahr nach der Restaurierung (Phosphatfällung mit dem Fällmittel Bentophos) bei "eutroph" eingependelt. Der Blankensee wies auch 2013 leicht erhöhte Phytoplanktongehalte auf, mit jedoch stärkerem sommerlichen Auftreten von Cyanobakterien. Anhand der QK Phytoplankton wurde der See wie seit 2010 "gut" bewertet. Die Daten zum Zooplankton zeigen die Wichtigkeit des Litorals in diesem See an. Der in den Vorjahren hohe Anteil der Rädertiere an der Zooplanktonmasse hat sich im aktuellen Jahr aufgrund der stärkeren Konkurrenz durch effektivere Filtrierer verringert. Der Transfer von Phyto- in Zooplanktonmasse ist (mit Ausnahme des Monats Juli) vergleichsweise günstig. Der GIC hat sich gegenüber den Vorjahren erhöht bzw. verbessert, insbesondere der Hochsommerwert, was zusammen mit dem überwiegend günstigen Umsatz von Phytoplankton in Zooplanktonmasse auf eine Verbesserung der Situation hinweist. Von 2010 bis 2013 ist ein Anstieg der Zooplanktonmasse zu verzeichnen, wobei im aktuellen Untersuchungsjahr wie beim Phytoplankton der Bereich eutroph indiziert wird.

- Der sehr flache und polytrophe **Bothkamper See** (Typ 11.2) weist hohe Phytoplanktongehalte auf (Diatomeen und Cyanobakterien), insbesondere hohe schlecht verwertbare Algendichten im Sommer und Frühherbst bei vermuteter verstärkter Phosphorrücklösung. Der See wurde 2013 an beiden Probestellen, die ein sehr ähnliches Plankton aufwiesen, anhand der QK Phytoplankton "schlecht" bewertet. Seit 2006, der letzten Untersuchung, gibt es keine Veränderungen. Beim Zooplankton weist die sehr hohe Biomasse sowie das Auftreten zahlreicher Eutrophierungszeiger den See als polytroph aus. Der niedrige Umsatz von Phytoplanktonmasse in Zooplanktonmasse während der warmen Jahreszeit spricht für eine ungünstige Nahrungszusammensetzung für das Zooplankton (schlecht fressbare Blaualgen). Zwischen Phytoplanktonmasse und Zooplanktonmasse ist keinerlei Gleichgang festzustellen; beide Parameter verlaufen völlig entkoppelt.
- Im kalkarmen **Bültsee** (Sondertyp) verweisen die ganzjährig geringen Planktongehalte und der ganzjährig hohe Anteil der Cryptophyceen und Chrysophyceen auf einen insgesamt intakten Zustand im Freiwasser des Sees hin. Der mesotrophe Flachsee wurde 2013 anhand der QK Phytoplankton "sehr gut" bewertet, 2008 genauso. Die Biomasse des Zooplanktons charakterisiert den See als (schwach) mesotroph. Gegenüber dem Jahr Untersuchungsjahr 2008 hat sich die Biomasse praktisch nicht verändert. Der niedrige GIC indiziert deutliche Fraßeffekte durch Fische. Der Umsatz von Phytoplankton- in Zooplanktonbiomasse ist noch als "günstig" zu bezeichnen.
- Der großflächige und polymiktische **Dobersdorfer See**, der seit 1999 alljährlich untersucht wird, ist ein planktondominierter typisch eutropher Flachsee (Typ 14), mit fast ganzjährigem verstärktem Auftreten von Bacillariophyceen und starker Dominanz der Dinophyceen und Cyanobakterien im Sommer, teils bis in den Herbst hinein. Der See wurde 2013 bei nur moderat erhöhten Biomassen anhand der QK Phytoplankton "mäßig" (2,7) bewertet. Die Nährstoff- und Planktongehalte der letzten Jahre sind meist moderat erhöht und insgesamt seit 15 Jahren abnehmend, was sich weniger stark im Phytoplankton und in der Trophie zeigt. Der Phytosee-Index schwankt seit 10 Jahren meist innerhalb des Bereichs "mäßig". Die Zooplankton-Biomasse im aktuellen Jahr ist (wie in den Jahren 2011 und 2012) vergleichsweise niedrig und stuft den See in den mesotrophen Bereich ein. Eutrophierungszeiger sind aber reichlich und über den gesamten Untersuchungszeitraum vorhanden. Der Umsatz von Phytoplankton- in Zooplanktonmasse ist von Juli an schlecht, nur im Frühjahr günstig. In den letzten drei Untersuchungsjahren ist ein Trend hin zu kleinen, wenig effektiv filtrierenden Cladoceren festzustellen, wobei im aktuellen Jahr ein leichter Anstieg gegenüber den Vorjahren zu verzeichnen ist. Der Fraßdruck durch Fische ist im aktuellen Jahr als allenfalls moderat einzuschätzen. Insgesamt ist hinsichtlich des Zooplanktons eine leichte Verbesserung gegenüber den Jahren 2011 und 2012 festzustellen.
- Der Garrensee ist ein relativ kleiner, silikat- und sehr kalkarmer geschichteter See (Sondertyp), der 2013 erstmalig ganzjährig geringe Planktongehalte aufweist. Er wird im Sommer und Herbst von verschiedenen Blaualgenarten dominiert, vor allem einer *Anabaena*-Art, die in früheren Jahren in der Biomasse deutlich vermehrt auftrat. Der Garrensee wurde 2013 anhand der QK Phytoplankton "gut" an der Grenze zu "sehr gut" bewertet, wobei dieser Wert aufgrund des sehr geringen Kalkgehaltes nur testweise gilt. Seit den letzten Untersuchungen 2008/09 gibt es insbesondere im Sommer einen deutlichen Rück-

gang der Cyanobakterienbiomasse, was mit einer Verbesserung des PSI um anderthalb Klassen einhergeht. Beim Zooplankton sind im Garrensee kaum Eutrophierungszeiger zu verzeichnen. Die deutliche Präsenz der großen Filtrierer schlägt sich in einem hohen GIC nieder und indiziert einen geringen Fraßdruck durch Fische. Die Zooplankton-Biomasse stuft den See sogar in den oligotrophen Bereich ein. Der Umsatz von Phytoplankton- in Zooplanktonmasse ist im Sommer relativ niedrig, was aber sicherlich durch die Präsenz der Makrophyten bedingt ist (Alternativnahrung über die Nahrungskette)

-11-

- Der Große Binnsensee, sehr flach (Typ 11.2) und als größter Strandsee in Schleswig-Holstein sehr windexponiert, weist im Mittel hohe Planktongehalte auf, wobei Bacillario-phyceen und Cyanobakterien die wichtigen Biomassebildner sind. Der sehr artenreiche See wurde 2013 anhand der QK Phytoplankton "unbefriedigend" bewertet. Beim Vergleich mit Altdaten von 2007 und auch 2002 ist ein sehr leichter Trend hin zu geringerer Trophie und geringeren PSI-Werten erkennbar, was sich auch in der Artenzusammensetzung zeigt. Der Gr. Binnensee war auch 2002 und 2007 im PSI "unbefriedigend" eingestuft. Beim Zooplankton sind Eutrophierungszeiger insbesondere bei den Planktonkrebsen deutlich vertreten. Salzliebende Arten kommen (trotz der Nähe zur Ostsee) nicht vor. Die Zooplanktonbiomasse ordnet den See (mit Trockengewichten im mg-Bereich) deutlich dem polytrophen Typus zu. Der Umsatz von Phytoplanktonmasse in Zooplanktonmasse ist für einen derart nährstoffreichen See vergleichsweise günstig, was auf die im aktuellen Jahr vergleichweise günstige Phytoplankton-Zusammensetzung zurückzuführen ist. Der hohe Cladoceren-Größenindex im Sommer weist auf einen allenfalls moderaten Fraßdruck durch Fische hin.
- Der stabil geschichtete und schwach eutrophe Große Plöner See (Typ 13) wird seit 1998 regelmäßig limnochemisch und planktologisch untersucht. Seitdem ist der großflächige, windexponierte See vor allem von großvolumigen Bacillariophyceen (Frühjahr und Herbst) und im Sommer bei geringen Biomassen von Cryptophyceen und großvolumigen Dinophyceen geprägt. Der deutliche Frühjahrs-Kieselalgenpeak verweist auf erhöhte Nährstoffgehalte während der Phase der Durchmischung. Auch 2013 war die Frühjahrsblüte ausgeprägt. Die ökologische Einstufung des Sees anhand der OK Phytoplankton für 2013 ist mit 3,5 "mäßig" im Grenzbereich zu "unbefriedigend". In den letzten 16 Jahren gibt es beim Gesamtphosphor im Epi- und Hypolimnion einen leichten Trend nach unten, was sich jedoch beim Phytoplankton, PSI und Trophieindex nicht widerspiegelt. Seit 2011 gibt es eine stete Zunahme des PSI und eine gegenüber den Jahren vor 2011 erhöhte Trophie. Beim Zooplankton deuten ein ganzjährig kleiner Cladoceren-Größenindex (GIC) und relativ niedriges Verhältnis von Phyto- zu Zooplanktonmasse ab August auf einen mindestens moderaten bis erhöhten Fischfraßdruck und in der zweiten Jahreshälfte auf eine weniger starke Kopplung zum Phytoplankton hin. Die Zooplankton-Biomasse im aktuellen Untersuchungsjahr indiziert (sicherlich beeinflusst durch die Probenahme bzw. das große Probenvolumen – Netzzug über 30 m und durch planktonarme Schichten) oligotrophe Bedingungen, was aber durch das Artenspektrum nicht gestützt wird (Eutrophierungszeiger vorhanden). Seit 2011 ist die Zooplanktonbiomasse geringer als in den Jahren zuvor. Im letzten Jahrzehnt zeigt sich eine Abnahme der Kopplung Phyto- zu Zooplankton.
- Das Phytoplankton des schwach polymiktischen und schwach eutrophen Gr. Segeberger
 Sees (Typ 14) war 2013 nur leicht erhöht, mit geringen jahreszeitlichen Schwankungen

und meist kleinen, schnell wachsenden Flagellaten (Haptophyceen). Es wurde keine sommerliche Algenblüte und nahezu keine Blaualgen beobachtet. Der schwach eutrophe See wurde anhand der QK Phytoplankton "gut" bewertet. Der Altdatenvergleich mit 2004 und 2010 zeigt seit 2004 insgesamt stetig abnehmende Werte für den Planktongehalt und einen deutlichen Sprung beim Phosphor von 2010 zu 2013 (abnehmend). Auch 2004 und 2010 wurden nahezu keine Blaualgen im Sommer gefunden. In der Summe hat sich der PSI von "mäßig" zu "gut" verbessert. Beim Zooplankton sind große Filtrierer bis auf die Hochsommermonate stark vertreten. Die Biomasse des Zooplanktons stuft den See in den mittleren mesotrophen Bereich ein. Der Umsatz von Phytoplankton in Zooplanktonmasse ist bis auf die Hochsommermonate günstig.

-12-

- Der Ihlsee ist ein relativ kleiner kalkarmer See (Sondertyp) mit stabiler sommerlicher Schichtung und geringen Planktongehalten. Das Phytoplankton weist eine große Diversität auf und wird von verschiedenen Algengruppen geprägt. Zahlreiche Arten verweisen auf eine geringe Trophie. Der schwach mesotrophe See wurde anhand der QK Phytoplankton "sehr gut" bewertet. Auch 2008 war der See auf diesem trophiearmen Niveau. Die Zooplanktonbiomasse ist sehr niedrig und charakterisiert den See als oligotroph. Der Cladoceren-Größenindex liegt mindestens im moderaten, eher im oberen Bereich, was zusammen mit der Präsenz von Raubcladoceren und Büschelmücken Larven für einen niedrigen Fraßdruck durch Fische spricht. Der Umsatz von Phytoplankton- in Zooplanktonmasse ist im Sommer relativ niedrig. Eventuell spielt auch hier die Präsenz der stark vertretenden Makrophyten eine den Umsatz verringernde Rolle (zur Verfügungstellung von Alternativnahrung über die Nahrungskette).
- Der relativ flache polymiktische Neversdorfer See (Typ 11.1), der zudem in Ost-West-Richtung exponiert ist, ist ein See mit deutlich erhöhten Planktongehalten, wobei die Algenblüten im Frühherbst am ausgeprägtesten sind. Neben meist gut verwertbaren Bacillariophyceen treten im Sommer und Herbst vor allem nostocale und chroococcale (Microcvstis) Cyanobakterien auf. Der stark eu- bis schwach polytrophe See war 2013 von Mai bis August schwach geschichtet und wurde anhand der QK Phytoplankton 2013 "mäßig" an der Grenze zu "unbefriedigend" bewertet. 2007 wurde der See zuletzt untersucht und unbefriedigend" eingestuft. Bei deutlich stärkerer Turbulenz im Wasserkörper und deutlich höheren Nährstoff- und Planktongehalten war der Index nur um 2 Zehntel höher. Betrachtet man auch noch die Altdaten von 2001, so ist evt. anhand der Phosphorwerte während der Frühjahrsvollzirkulation eine leichte Trophieverbesserung im letzten Jahrzehnt erkennbar, die jedoch durch Wetterschwankungen nicht deutlich sichtbar ist. Die Zooplankton-Biomasse stuft den See in den (schwach) eutrophen Bereich ein. Der Umsatz von Phytoplankton- in Zooplanktonmasse ist in den Sommermonaten gering, was sicherlich auf die stark präsenten, schlecht fressbaren Cyanobakterien und Dinophyceen zurückzuführen ist. Der hohe Cladoceren-Größenindex indiziert (zusammen mit der Präsenz von Büschlmücken-Larven und Raubcladoceren) einen geringen Fraßdruck durch Fische auf das Zooplankton.
- Der kleine versauerte Waldsee **Pinnsee** zeigt als Sondertyp auch im Phytoplankton Besonderheiten. Der trotz einer mittleren Tiefe von 4,7 m sommerlich stabil geschichtete See wurde 2013 ab Juli im Phytoplankton von sehr großvolumigen Flagellaten dominiert, v.a. *Gonyostomum semen* aus der Gruppe der Raphidophyceen. Anhand zahlreicher Altdaten

aus den letzten 15 Jahren zeigt sich im Pinnsee eine sehr stabile wiederkehrende Planktonzönose. Im Frühjahr sind coccale Grünalgen dominant. Im Sommer bis in den Herbst hinein herrschen in allen Jahren vor allem großvolumige Flagellaten, in den letzten Jahren *Gymnodinium uberrimum*. Im Herbst treten zudem in vielen Jahren dominant Chrysophyceen auf, v.a. mit der Gattung *Dinobryon*. Insgesamt ist der Pinnsee artenarm. Die Trophie ist immer gleichbleibend eutroph (um 3,0). Dieser See wurde anhand der QK Phytoplankton nur testweise bewertet. Das Zooplankton weist im Sommer nahezu keine Kopplung zum Phytoplankton auf. Beim Zooplankton fällt der See wie schon in früheren Jahren durch seine Artenarmut auf. Große Filtrierer sind kaum vorhanden; entsprechend ist der GIC sehr niedrig. Auffällig im aktuellen Jahr ist die anteilig starke Präsenz von Ciliaten bei gleichzeitig sehr niedrigen Biomassen im Sommer und Herbst. Das Z/P Verhältnis (und damit der Umsatz von Phytoplankton- in Zooplanktonmasse) während der Sommer- und Herbstmonate ist extrem niedrig. Phtoplankton- und Zooplanktonmassen verlaufen völlig entkoppelt.

- Der relativ tiefe und kleine schwach eutrophe **Ukleisee** (Typ 10) war 2013 planktologisch gesehen ein besonderer See. Im Mai und Juni zu Beginn der Untersuchungen, wurden hohe Biomassen der rötlich gefärbten Burgunderblutalge aus der Gruppe der Cyanobakterien analysiert (*Planktothrix rubescens*). Im Sommer waren die Biomassen nur moderat erhöht. Die Einstufung des Sees anhand der QK Phytoplankton ist für 2013 "mäßig". Altdaten zum Phytoplankton liegen nicht vor. Die Zooplankton-Biomasse gruppiert den See in den mesotrophen Bereich. Eutrophierungszeiger sind aber bei den Rädertieren vorhanden. Der während der überwiegenden Zeit niedrige Umsatz von Phytoplankton- in Zooplanktonmasse bestätigt die eher "weniger günstige Phytoplanktonsituation". Fraßeffekte durch Fische sind (aufgrund des relativ hohen GIC) als gering einzuschätzen.
- Der mittelgroße und stabil geschichtete Vierer See (Typ 10) zeichnete sich 2013 durch eine sehr ausgeprägte Frühjahrsblüte von gut verwertbaren centrischen Kieselalgen und im Sommer durch relativ geringe Gehalte verschiedenster Algengruppen aus, wobei dort verschiedene Arten geringer Trophie auftraten. Die Einstufung des schwach eutrophen Sees anhand der QK Phytoplankton war 2013 "mäßig". Die Altdaten von 2004 zeigen deutlich höhere Planktongehalte und vor allem im Sommer ein deutlich anderes Bild mit starker *Ceratium*-Blüte. Die Einstufung 2004 war "unbefriedigend". Beim Zooplankton fallen die in den Sommermonaten deutlich hervortretenden vagilen Ciliaten und Rotatorien bei gleichzeitig niedrigen Zooplanktonmassen auf und sprechen für ungünstige Nahrungsbedingungen und vermutlich hohe Bakterienzahlen. Der GIC ist in der zweiten Jahreshälfte sehr niedrig. Der Umsatz von Phytoplankton- in Zooplanktonmasse ist im aktuellen Untersuchungsjahr in den Sommermonaten äußerst niedrig.

2. Einleitung

Im Rahmen der Umsetzung der EU-Wasserrahmenrichtlinie (EU-WRRL) aus dem Jahr 2000 (EUROPÄISCHE UNION 2000) ist für die Bewertung des ökologischen Zustandes von Seen u.a. die Untersuchung der Zusammensetzung, Abundanz und Biomasse des Phytoplanktons gefordert. Dies war Anlass, den ökologischen Zustand der schleswig-holsteinischen Seen anhand des Phytoplanktons im Jahr 2013 zu untersuchen.

-14-

Es sollten dazu jahreszeitlich 14 Seen mit insgesamt 15 Messstellen bezüglich der Phytoplanktonentwicklung (inkl. Profundaldiatomeen) im Rahmen einer operativen bzw. überblicksweisen Überwachung oder als Erfolgskontrolle nach einer Maßnahme (Behlendorfer See, Blankensee) untersucht werden. Zum besseren Verständnis der Planktonzönose und der Nahrungskettensteuerung war auch die Entwicklung des Zooplanktons zu analysieren. Der Große Plöner See und Dobersdorfer See (ebenso operative Überwachung) sind gleichzeitig Teil des bundesweiten Seenmonitorings des Umweltbundesamtes.

Die erhobenen Daten sollten grafisch und textlich dargestellt werden und hinsichtlich der Indikatorfunktion des Planktons im Rahmen der EU-WRRL aufbereitet und bewertet werden. Anhand von bereitgestellten Altdaten zum Plankton und zur Trophie waren Tendenzen der zeitlichen Entwicklung zu beschreiben.

3. Untersuchungsgewässer im Überblick

Es wurden 14 Seen und 15 Messstellen untersucht. Bei einem See (Bothkamper See) wurden zwei Messstellen beprobt und analysiert (Tab. 2)

-15-

Der Große Plöner See ist mit einer Fläche größer 1000 ha der größte der untersuchten Seen, der Pinnsee mit ca. 8 ha der kleinste. 7 der 13 Seen weisen eine stabile Schichtung auf (Typ 10 und 13) (Tab. 1).

Tab. 1: Auflistung der 14 Untersuchungsgewässer 2013 mit wichtigen Seekenndaten (Datenquelle: LLUR). Die Seen sind alphabetisch geordnet.

Erläuterungen: VQ = Volumenquotient = oberird. Einzugsgebietsfläche / Seevolumen. *: Seetyp nach MATHES et al. (2005) für Seen > 50 ha, mit Sondertypen natürlicher Seen nach Kriterien des LLUR (88.1 = elektrolytreicher Binnensee der Ostseeküste, Strandsee; 88.3 = kalkarmer See; 88.5: Versauerungssee). ** Planktontyp nach MISCHKE & NIXDORF (2008).

See- Nr	Seename	Seetyp	Plank- tontyp **	Seeflä- che (ha)	Tiefe mittl. (m)	Tiefe max. (m)	Verweil- zeit (a)	VQ (km ² 10 ⁶ m ⁻³)
0019	Behlendorfer See	13	13	62,8	6,2	15,4	3,3	1,0
0026	Blankensee	88.3	11.2	23,0	1,6	2,7	0,4	7,6
0040	Bothkamper See	11	11.2	136	1,2	2,5	0,1	33,0
0050	Bültsee	88.3	11.2	19,8	3,0	13,4	1,0	3,2
0062	Dobersdorfer See	14	14	317	5,3	18,8	2,4	1,3
0090	Garrensee	88.3	13	18,2	9,9	23,3	6,1	0,5
0109	Großer Binnensee	88.1	11.2	478	1,9	3	0,2	16,1
0114	Großer Plöner See	13	13	2.958	12,8	56,2	3,1	1,0
0120	Gr. Segeberger See	14	14	173	6,3	12	3,9	0,8
0169	Ihlsee, Bad Segeberg	88.3	13	29,1	7,4	21,5	9,7	0,3
0286	Neversdorfer See	11	11.1	81,0	3,7	9,8	0,4	8,2
0305	Pinnsee	88.5	10.1	8,10	4,7	8,3	0,5	6,6
0425	Ukleisee	10	10.1	33,1	7,3	17	0,6	5,3
0427	Vierer See	10	10.1	133	7,6	18,8	1,6	1,9

Tab. 2: Auflistung der 15 untersuchten Messstellen (Daten des LLUR) 2013. Die Seen sind nach dem Seenamen alphabetisch geordnet (Seetyp und Planktontyp nach WRRL, Sondertypen 88 nach LAWA, siehe Tab. 1).

See-Nr	F_S_Name	MS-Nr	M_Name1
0019	Behlendorfer See	129027	Behlendorfer See, tiefste Stelle
0026	Blankensee	129219	Blankensee (tiefste Stelle)
0040	Bothkamper See	129255	Bothkamper See, östlich Bissee
0040	Bothkamper See	129081	Bothkamper See, tiefste Stelle
0050	Bültsee	129004	Bültsee, tiefste Stelle
0062	Dobersdorfer See	129009	Dobersdorfer See vor Schlesen, tiefste Stelle
0090	Garrensee	129002	Garrensee, tiefste Stelle
0109	Großer Binnensee	129172	Großer Binnensee, tiefste Stelle
0114	Großer Plöner See	129102	Großer Plöner See, Südteil, tiefste Stelle
0120	Großer Segeberger See	129008	Großer Segeberger See, tiefste Stelle
0169	Ihlsee, Bad Segeberg	129052	Ihlsee, tiefste Stelle
0286	Neversdorfer See	129160	Neversdorfer See, tiefste Stelle
0305	Pinnsee	129063	Pinnsee, tiefste Stelle
0425	Ukleisee	129192	Ukleisee, tiefste Stelle
0427	Vierer See	129050	Vierer See ,tiefste Stelle

Tab. 3: Trophiedaten von 15 Messstellen in 14 Seen für das Jahr **2013**, eingestuft sowohl nach dem bisherigen LAWA-Trophieverfahren (LAWA 1999) als auch dem neuen, überarbeiteten Verfahren (Riedmüller et al. 2013; Toolversion von November 2013). Die Seen sind alphabetisch geordnet (Datenherkunft: LLUR).

				Trophie-	Trophie-
		Trophie-	Trophie-	Index	klasse
		Index	Klasse	RIEDMÜLLER	RIEDMÜLLER
MS_NR	M_NAME1	LAWA 1999	LAWA 1999	et al. 2013	et al. 2013
129027	Behlendorfer See, tiefste Stelle	2,5	mesotroph 2	2,5	mesotroph 2
129219	Blankensee, tiefste Stelle	3,2	eutroph 2	3,2	eutroph 2
129081	Bothkamper See, tiefste Stelle	4,7	hypertroph	4,9	hypertroph
129255	Bothkamper See, östl. Bissee	4,8	hypertroph	4,9	hypertroph
129004	Bültsee, tiefste Stelle	2,6	eutroph 1	2,5	mesotroph 2
129009	Dobersdorfer See vor Schlesen	3,0	eutroph 1	3,0	eutroph 2
129002	Garrensee, tiefste Stelle	1,9	mesotroph 1	1,9	mesotroph 1
129172	Großer Binnensee, tiefste Stelle	3,9	polytroph 1	3,9	polytroph 1
129102	Großer Plöner See, Südteil	2,4	mesotroph 2	2,7	eutroph 1
129008	Gr. Segeberger See, tiefste Stelle	2,6	eutroph 1	2,6	eutroph 1
129052	Ihlsee, tiefste Stelle	1,9	mesotroph 1	1,7	mesotroph 1
129160	Neversdorfer See, tiefste Stelle	3,5	eutroph 2	3,6	polytroph 1
129063	Pinnsee, tiefste Stelle	2,9	eutroph 1	3,0	eutroph 1
129192	Ukleisee, tiefste Stelle	2,8	eutroph 1	2,8	eutroph 1
129050	Vierer See ,tiefste Stelle	2,6	eutroph 1	2,7	eutroph 1

4.1 Feldmethodik

Die Proben für die Analyse des Planktons und der chemischen Parameter wurden vom LLUR selbst im Bereich der tiefsten Stelle entnommen. Es wurden vom Zeitraum März - November 2013 insgesamt folgende Anzahl Proben bearbeitet (Messstellen und Termine siehe Anhang Kap. 11.1 und 11.2):

-17-

- **106 Schöpfproben** für das Phytoplankton (250 ml für das gesamte Phytoplankton), mit anschließender Lugolfixierung.
- **42 Schöpfproben** (1 Liter Volumen) für die Erstellung von Schalenpräparaten zur Diatomeenanalyse, mit anschließender Formalinfixierung und Einengung durch Sedimentation auf 60 bis 70 ml. Die Proben für die Diatomeenanalyse wurden nur im Frühjahr und Herbst entnommen. Von den 42 Proben wurden **39** vollständig analysiert.
- einmalig 13 Proben (13 Messstellen aus 13 Seen) aus dem obersten Zentimeter des Profundalschlamms zur Analyse der Profundaldiatomeen und Ermittlung des DI-PROF.
- 102 Netz- oder Schöpfproben für die Analyse des Zooplanktons.

Die Probenahme für das **Phytoplankton** wurde nach einem festem Schema durchgeführt, mittels eines integrierenden Schöpfers (IWS, Hydrobios), in Anlehnung an NIXDORF et al. (2008). Die Tiefe der Integralprobe wurde wie folgt ermittelt:

Tiefere geschichtete Seen

- <u>Bei Durchmischung des Wasserkörpers</u> wird die Probenahme bis zur mittleren Tiefe, maximal bis 10 m Tiefe, durchgeführt.
- Bei sommerlicher Schichtung und der Bedingung $Z_{eu} > Z_{epi}$ wird eine Probe aus der euphotischen Zone (= Sichttiefe x 2,5), maximal bis 10 m Tiefe, entnommen.
- Bei sommerlicher Schichtung und der Bedingung $Z_{epi} > Z_{eu}$, also in "trüben Seen", wird eine Probe nur bis zur Epilimniontiefe entnommen, maximal bis 10m Tiefe.

Des Weiteren wurden im Rahmen der Umsetzung der EU-WRRL einmalig im September 2013 Proben aus dem Profundalschlamm zur Analyse der **Profundaldiatomeen** entnommen. Es wurde eine Probe aus dem obersten Zentimeter des Sediments entnommen. Der oberste Zentimeter integriert in etwa die Zusammensetzung der Diatomeenflora der letzten 3 (2-6) Jahre (NIXDORF et al. 2008). Die Probe wurde entnommen und in einem Gefrier-Plastikbeutel unfixiert tiefgefroren.

Die Proben für die **Zooplanktonanalyse** wurden ebenfalls auf unterschiedliche Art entnommen. In der Regel wurden an der tiefsten Stelle Vertikalzüge mit einem Planktonnetz der Maschenweite 55 μm mit Aufsatzkegel (Fa. Hydrobios, Netzlänge 50 cm, Netzöffnung 10 cm) von ca. 2 m über Grund bis zur Oberfläche entnommen (Auflistung im Anhang in Kap. 11.1). Ausnahmen sind der Blankensee, Bothkamper See und Gr. Binnensee. In diesen Seen wurden Proben mittels eines 2,5 L Schöpfers entnommen. Alle Proben wurden vor Ort mit Formaldehyd fixiert (4 % Endkonzentration).

4.2 Labormethodik

4.2.1 Phytoplanktonanalyse in der Lugolprobe

Das Phytoplankton wurde durch Auswertung der lugolisierten Schöpfprobe und des Schalenpräparates analysiert. Für den Blankensee standen keine Diatomeenproben zur Bearbeitung als Schalenpräparat zur Verfügung.

Die qualitative und quantitative Analyse des Phytoplanktons der Lugolprobe erfolgte an einem Umkehrmikroskop der Fa. Leitz (Arp) bei Hellfeldbeleuchtung mit bis zu 790facher Vergrößerung, des Weiteren bei schwierig zu bestimmenden Arten mit einem Interferenz-Auflichtmikroskop mit bis zu 1000facher Vergrößerung. Die Diatomeen wurden an einem Durchlichtmikroskop (BX51 von Olympus) mit Interferenzkontrasteinrichtung, bis 1000fach (Oel 100/1.30), bis zur Art bestimmt.

Die Labor-Analyse erfolgte in Anlehnung an NIXDORF et al. (2008).

Qualitative Analyse

Die qualitative Analyse erfolgte möglichst auf Artniveau, in der Regel aber zumindest bis zu einem Mindestbestimmbarkeitsniveau, das im Rahmen der Entwicklung des WRRL-Bewertungssystems von der Arbeitsgruppe Mischke et al. für jedes Taxon festgelegt wurde. Jedes erfasste Taxon erhielt die Bezeichnung und ID-Nummer aus der harmonisierten Phytoplankton-Taxaliste Deutschlands, die aus dem Internet herunterladbar ist (Website Dr. Ute Mischke, IGB, HTL mit Stand vom Juni 2009 und Ergänzungen 2013).

Für jeden See wurde eine Artenliste unter Angabe des Erstbeschreibers erstellt (siehe Anhang Kap. 11.3). Die verwendete Literatur für die taxonomische Analyse ist in Kap. 8 aufgelistet.

Zählung und Biovolumen-Ermittlung

Für die quantitative Analyse der Taxa der Lugolprobe wurden, wenn möglich, mindestens 15 Arten bzw. Taxa quantitativ erfasst. Es wurden dabei mindestens 95 % der Biomasse ermittelt und mindestens 400 Objekte pro Probe gezählt. Die Abundanz des Phytoplanktons wurde durch Auszählen der gesamten Sedimentationskammer oder von Transekten, abhängig von Größe und Dichte der Organismen, ermittelt. Bei der Zählung kleinerer dominanter Phytoplanktontaxa wurden mindestens 60 Zellen bzw. Zähleinheiten pro Art in mindestens zwei

Transekten ausgezählt. Größere Taxa wurden in größeren Teilflächen bzw. der gesamten Kammer ausgewertet.

Juli 2014

Bei erhöhtem Vorkommen von gallertigen Cyanobakterien (u.a. *Microcystis*) wurde eine Teilprobe der Lugolprobe mit einem Ultraschall-Desintegrator (Sonoplus Ultraschall-Homogenisator HD 2070) behandelt, so dass die Kolonien aufgelöst wurden und die Zellen einzeln gezählt werden konnten. Es wurde ca. 3 min. bei 70 % Power beschallt. In der unbehandelten Lugolprobe wurde vorher der jeweilige Anteil der einzelnen chroococcalen Arten an der Gesamtanzahl der Zellen abgeschätzt.

Das Körpervolumen des Phytoplanktons der Lugolprobe wurde durch Annäherung an geometrische Körper in Anlehnung an ATT (1998) und PADISÁK & ADRIAN (1999) ermittelt. Bei in der Größe stark variablen Taxa wurden ca. 20 Zellen pro Taxon oder Größenklasse ausgemessen bzw. es wurden einzelne Größenklassen einer Art vermessen. Bei Taxa mit nahezu konstantem Volumen wurde das Volumen der einmal vermessenen Zelle beim nächsten Termin wiederverwendet. Das Biovolumen wurde für jedes Taxon, jede Algenklasse und die Gesamtprobe berechnet.

Für vergleichende Betrachtungen des Phyto- und Zooplanktons wurde das Phytoplankton-Trockengewicht mit 45 % des Frischgewichtes abgeschätzt (REYNOLDS 1984).

Fotodokumentation

Es wurden von jeder lugolisierten Schöpfprobe mindestens zwei digitale Fotos des Phytoplanktons aufgenommen. In der Regel wurde ein je ein Übersichtfoto bei 100- bzw. 250facher Vergrößerung zur Dokumentation erstellt. Die Kammerhöhe war zum besseren Vergleich bei nahezu allen Proben 100 mm. Die Fotos wurden mit einer fest am Umkehrmikroskop installierten Digitalkamera (CANON EOS 300 D) aufgenommen. Die Fotos mit Angabe des jeweiligen Sees und Datum liegen dem Auftraggeber vor.

4.2.2 Pelagialdiatomeen

Parallel zur Quantifizierung des Phytoplanktons wurden anhand der angefertigten Diatomeen-Präparate die relativen Abundanzen der solitären zentrischen Diatomeen bestimmt. Die Aufbereitung, Präparation und Analyse der Pelagialdiatomeen erfolgte gemäß Verfahrensvorschrift (MISCHKE & NIXDORF 2008). Die Untersuchungen wurden an einem Olympus-Durchlichtmikroskop mit Interferenzkontrast (DIC) bei 1000-facher Vergrößerung durchgeführt. Es wurden je 200 Objekte gezählt, auf Artniveau determiniert und nach Größenklassen differenziert. Die ermittelten relativen Anteile der Arten innerhalb der Größenspektren wurden mit den Zählergebnissen der Centrales Größenklassen ins Verhältnis gesetzt. So konnten durch Rückrechnung die Biovolumenanteile der solitären zentrischen Diatomeen auf Artebene angegeben werden.

Daten- und Fotodokumentation

Die Daten der Taxainventare und -häufigkeiten wurden im Format MS Excel 2000 eingegeben und dem Auftraggeber auf Datenträger übermittelt. Für die meisten nachgewiesenen cent-

rischen Taxa wurde ein aussagekräftiges Foto erstellt. Die Fotografien mit Angabe des jeweiligen Taxons sowie den zugehörigen Standortdaten liegen dem Auftraggeber vor.

4.2.3 Analyse der Profundaldiatomeen

Alle 13 entnommenen Profundalproben wurden präpariert und von Ihnen Dauerpräparate erstellt. Die Probe des Bültsees konnte wegen zu geringer Schalendichte und sehr hohem Anteil von Detritus nicht analysiert werden. Das Dauerpräparatat dazu liegt vor.

Die Aufbereitung, Präparation und Analyse der Profundaldiatomeen erfolgte grundsätzlich gemäß Verfahrensanleitung (NIXDORF et al. 2008). Es wurden jedoch statt der geforderten 400 Schalen pro Präparat 500 Schalen determiniert. Erfasst wurden – ebenfalls abweichend von der Anleitung – nicht nur planktische, sondern auch benthische Diatomeentaxa.

Die Präparation erfolgte gemäß den Angaben zur "Aufbereitung von Diatomeenproben nach der Wasserstoffperoxid-Methode von VAN DER WERFF (1955)" (aus NIXDORF et al. 2008). Auch hier wurden Diatomeenstreupräparate in Naphrax eingebettet.

Die mikroskopische Analyse der planktischen Diatomeen erfolgte an einem Leitz SM-Lux-Durchlichtmikroskop bei 1000-facher Vergrößerung. Es wurden je Probe 500 Objekte gezählt, auf Artniveau determiniert und die relativen Abundanzen der Arten angegeben.

4.2.4 Zooplanktonanalyse

Es wurden 102 Proben analysiert.

In der vorliegenden Studie wurden 14 Seen in ca. monatlichen während der Vegetationsperiode beprobt (meist April bis Oktober; Gr. Plöner See und Dobersdorfer See April bis November). Im Bothkamper See wurde - neben den Proben an der tiefsten Stelle - eine weitere Probe im September an der Stelle östlich Bissee entnommen. Bei der Beurteilung der Ergebnisse ist zu beachten, dass Winterarten bzw. Arten, die im zeitigen Frühjahr ihr Entwicklungsmaximum aufweisen, unterrepräsentativ erfasst wurden.

Probenbehandlung

Jede der angelieferten Zooplankton-Proben wurde vor ihrer Bearbeitung zunächst über ein 30 µm Planktongaze-Sieb dekantiert und mit Leitungswasser gespült. Das im Sieb konzentrierte Zooplankton wurde anschließend − je nach Dichte − in 100 − 2000 ml Kolben suspendiert. Aus dieser Suspension wurden Teilproben / Aliquote (≥ 2) entnommen, anschließend in 10 ml Röhrenkammern (Kammerhöhe 1 cm) gefüllt und nach einer Sedimentationszeit von ca. 10 (Crustaceen) bis 30 Minuten (Rotatorien) unter dem inversen Mikroskop (Zeiss IM35) ausgezählt (Vergrößerung ca. 60-fach bei Crustaceen und 100-fach bei Rotatorien). Bei der Suspension der Proben wurde darauf geachtet, dass das Zooplankton homogen verteilt ist. Bei der Abfüllung der Kammern wurde möglichst rasch gearbeitet, da große Zooplankter (Daphnien, eitragende Copepodenweibchen) rasch sedimentieren und bei "langsamer Vorgehensweise" nicht repräsentativ erfasst werden. Für aspektbestimmende Arten wurden mindestens 100 Individuen ausgezählt. Insgesamt wurden mindestens 400 Individuen je Probe (ohne Copepoden Nauplien) ausgezählt (Empfehlung Projekt Phytoloss).

Bestimmung

Die Zählung / Bestimmung erfolgte soweit möglich auf Artbasis. Für die Bestimmung der Arten wurde die aktuelle Bestimmungsliteratur verwendet: Rotatoria: KOSTE (1978), RUTTNER-KOLISKO (1978); Cladocera: FLÖßNER (1993, 2000), LIEDER (1999), HERBST (1976 – nur Litoralcladoceren); Copepoda: KIEFER (1973), KIEFER & FRYER (1978), EINSLE (1993).

-21-

Bei den Rotatorien wurde die Gattung *Collotheca* nicht weiter aufgespalten, da hier die wesentlichen Merkmale für eine Artbestimmung durch die Fixierung der Tiere nicht zugänglich sind. Bei der Gattung *Synchaeta* wurde zwischen den großen Formen (in den vorliegenden Proben *S. pectinata*) und kleinen Synchaeten (S. *tremula / S. oblonga / S. lakowitziana* Gruppe) differenziert. Für die Abgrenzung von "Arten" innerhalb der Gattung *Polyarthra* wurde nach einer Graphik aus STEMBERGER (1979) verfahren: Individuen mit deutlich über körperlangen Schwimmflossen und einer Körperlänge von \leq ca. 100 µm wurden als *P. remata* determiniert; Individuen mit etwa körperlangen bzw. deutlich über körperlangen Schwimmflossen und einer Körperlänge zwischen ca. 100 und 150 µm wurden als *P. vulgaris* bzw. *P. dolichoptera* bestimmt und Individuen \geq 150 mit ca. körperlangen, breiten bzw. sehr breiten Schwimmflossen wurden als *P. major* bzw. *P. euryptera* bestimmt.

Cladoceren wurden bis zur Art bestimmt. Intermediäre Morphen ("Hybride") wurden ebenfalls zugeordnet. Soweit möglich wurde aber bei den Daphnien konservativ verfahren; d.h. Hybride wurden – wenn möglich – vermieden. Copepoden wurden immer bis zur Art bestimmt und die Copepodidstadien wurden soweit möglich der jeweiligen Art zugeordnet. Eine Ausnahme bei der Copepodid-Zuordnung machen in einigen (schwierigen) Fällen die ersten Copepodide; diese wurden (falls die Zuordnung unsicher war) der aspektbestimmenden Art zugeschlagen. Lediglich die Trennung der Copepodidstadien von *Eudiaptomus gracilis* und *E. graciloides* ist bislang nicht möglich (Kiefer & Fryer 1978). Diese wurden (bei starkem Auftreten beider Arten) als calanoide Copepodide zusammengefasst, oder (im Falle, dass eine der beiden Arten sehr selten war) der dominanten Art zugeschlagen. Nauplien wurden nach Calanoiden und Cyclopoiden differenziert. Unterarten (z.B. innerhalb der Gattungen *Keratella* oder (*Eu)Bosmina*) wurden ebenfalls berücksichtigt. Sofern notwendig wurden kritische Taxa mittels präparativer Methoden abgesichert (z.B. P5 Präparation etc. bei Copepoden). Informationen zu Indikatorarten wurden z. B. den Arbeiten GLIWICZ (1969), KARABIN (1983), GANNON & STEMBERGER (1978), GELLER & MÜLLER (1981) oder MAIER (1996) entnommen.

Zählung, Zählkategorien

Bei den Rotatorien liegen Messungen für jedes Taxon aus früheren Projekten vor (ARP & DENEKE 2006, 2007; MAIER & STICH 2012), die übernommen wurden. Eine Festlegung von Zählkategorien / Größenklassen erfolgte für größenvariable Crustaceen. Bei den Cladoceren wurden je nach Taxon 2 – 6 Größenklassen (in ca. 300 µm Abständen) unterschieden. Beispielsweise wurden jeweils für kleine (z.B. *D. cucullata*) sowie für mittelgroße Daphnien (*D. galeata / hyalina*) 2 Juvenilstadien und mindestens 3 Adultstadien differenziert. Bei Copepoden wurden neben den Nauplien alle 5 Copepodidstadien, Männchen und Weibchen separat gezählt. Für die Größenklassendifferenzierung der Cladoceren wurde ein Okular mit Gitternetz verwendet, das vorher mittels eines Objektmikrometers geeicht wurde. Für sehr große Zooplankter (Raubcladoceren), die mittels des relativ kleinen Probenahme-Netzes nur halb-

Arp, Maier & Michels -22- Juli 2014

quantitativ erfasst werden, wurden 3 Größenklassen festgelegt. Zur Ermittlung der Abundanz der Raubcladoceren wurde die gesamte Probe herangezogen; d.h. die Probe wurde nochmals über das 30 µm Sieb dekantiert, anschließend in Petrischalen verteilt und komplett nach Raubcladoceren durchsucht. Die Anwesenheit von *Chaoborus* spp. wurde jeweils notiert und die in der Probe vorhanden Larven wurden ebenfalls gezählt. Die Abundanzen der Arten / Zählkategorien wurden unter Berücksichtigung der Netzgeometrie (Öffnungsdurchmesser, Radius) bzw. des Schöpferinhaltes und der Verdünnung im Labor hochgerechnet.

Biomasse

Die in der vorliegenden Arbeit verwendeten Trockengewichte für Rädertiere orientieren sich an früheren Studien zum Zooplankton von Seen in Schleswig Holstein (ARP & DENEKE 2006, 2007; KASTEN & MICHELS 2008). Diese Angaben wurden der Vergleichbarkeit halber verwendet. Weitere Angaben zur Biomasse von Rotatorien finden sich z. B. in PAULI (1989), SCHWOERBEL (1994), WALZ (1995) oder MAIER & STICH (2012). Bei Cladoceren wurde für jede Gattung (jeden "Morphotyp": *Daphnia* vs. *Bosmina* vs. *Eubosmina* vs. *Ceriodaphnia* vs. *Diaphanosoma*) verschiedene Formeln verwendet und damit die Trockenmasse für jede Zählkategorie / Größenklasse innerhalb der Gattung errechnet. Bei Copepoden wurden für Calanoide, kleine Cyclopoide und große Cyclopoide unterschiedliche Formeln (Längen-Gewichts-Regressionen) auf die Zählkategorien verwendet. Die verwendeten Formeln wurden vorab auf ihre Plausibilität geprüft; d.h. die daraus errechneten Ergebnisse wurden mit Literaturdaten verglichen (z.B. mit den Angaben in DUMONT et al. 1975). Die verwendeten Formeln sind wie folgt:

Cladocera:

Daphnia: $TG = 5.29 \times L^{2.76}$

Bosmina: $TG = 19,67 \times L^{2,89}$

Ceriodaphnia: $TG = 12,38 \times L^{2,84}$

Diaphanosmoma: $TG = 3,75 \times L^{2,68}$

Copepoda:

Calanoide: $TG = 5.44 \times L^{2.81}$

Kleine Cyclopoide In TG = 1,304 x 2,49 x In L (Formel für *Mesocyclops* Typ)

Große Cyclopoide $\ln TG = 2,213 \times 2,29 \times \ln L$ (Formel für *Cyclops* Typ)

Die Formeln für Cladoceren und calanoide Copepoden entstammen einem früheren Bericht (MAIER 2007); Bei cyclopoiden Copepoden wurde auf die in BOTTRELL et al. (1976), MCCAULEY (1984) sowie in PADISÁK & ADRIAN in TÜMPLING & FRIEDRICH (1999) gelisteten Gleichungen zurückgegriffen. Für Raubcladoceren wurden Trockengewichte aus GARTON & BERG (1978) und BUKHARDT (1994) – *Bythotrephes*, bzw. CUMMINS et al. (1969) – *Leptodora* verwendet. Rechnet man mit den oben angegebenen Formeln, so ergeben sich Trockenmas-

sen, die größenordungsmäßig gut mit den in ARP & DENEKE (2007) gelisteten Werten übereinstimmen.

Größenindex und Grazing Potential

Als mögliches Maß für Top-Down Effekte wurde in Anlehnung an ARP & DENEKE (2007) der Cladoceren Größenindex (GIC bzw. aktuell MCM) berechnet. Dieser Index errechnet sich als Quotient aus der mittleren Cladocerenbiomasse und der mittleren Abundanz der Cladoceren (d.h. GIC / MCM = mittlere Masse eines Individuums). Die Abschätzung der "top-down" Effekte durch Fischfraß mittels GIC basiert v. a. auf den in der Literatur beschriebenen Fakten, dass Fische große, wenig fluchtfähige und auffällig gefärbte Individuen selektieren. Hierbei ist allerdings zu berücksichtigen, dass das Größenspektrum u. a. auch "bottom up" gesteuert wird. Unterschreitet der GIC im Sommer (zur Zeit des stärksten Fisch-Prädationsdruckes) 6 µg L⁻¹ (grob das Gewicht einer 1 mm langen Daphnie), so wird der Prädationdruck durch Fische als mindestens moderat eingestuft.

Das **Z** / **P** Verhältnis (Maß für den Umsatz von Phytoplankton- in Zooplanktonmasse und grobes Maß für den Fraßdruck des Zooplanktons auf das Phytoplankton) wurde ebenfalls in Anlehnung an ARP & DENEKE (2007) berechnet, wobei auf Jeppesen et al. (1997) Bezug genommen wird. Dazu wird die Zooplankton-Masse in Relation zur Phytoplankton-Masse gestellt. In den Tabellen sind Mittelwerte für das Z / P-total über den gesamten Untersuchungszeitraum sowie der jeweilige Median gelistet, wobei Wert auf die Mediane gelegt wurde. Im Rahmen des LAWA Projektes "Phytoloss" soll zusätzlich das Z / P-fressbar über funktionelle Gruppen analysiert werden. Die dort erstellte Matrix befindet sich aber noch in der Testphase und muss auch automatisiert werden, da der Rechenaufwand erheblich ist. In Abänderung von ARP & DENEKE (2007) bzw. Jeppesen et al. (1997) wurden die Rotatorien bei der Berechnung des Z / P mit berücksichtigt.

Schwellenkonzentration und Fressbarkeit des Phytoplanktons

Schwellenkonzentrationen finden sich in der Literatur für die Eiproduktion und für das Wachstum von Cladoceren / Daphnien. Die Schwellenkonzentrationen für die Eiproduktion liegt ca. bei 0,2 mg C L⁻¹ bzw. etwas darunter (also bei ca. 0,3 bis 0,4 mg TG L⁻¹) (LAMPERT 1980, 1988). Die jeweiligen Schwellenkonzentrationen variieren allerdings von Art zu Art.

Steckbriefe

Für die einzelnen Seen wurden "Steckbriefe" erstellt. In den Steckbriefen wird zunächst kurz auf die Artenzahlen, die dominanten Arten, die Abundanz und den saisonalen Verlauf der aspektbestimmenden Arten / Taxa eingegangen. Anschließend werden die Biomassen sowie das Nahrungsnetz behandelt. Die Protozoen werden nur kurz besprochen. Zu beachten ist, dass in den Steckbriefen die einzelnen Graphiken auf den jeweiligen See zugeschnitten sind; d.h. die Y-Achsen bei den Absolutwerten z. B. der Biomassen weisen von See zu See unterschiedliche Skalen auf.

4.3 Bewertung mittels Phytoplankton (PSI) im Rahmen der EU-WRRL

Es wurden 15 Messstellen an 14 Seen bewertet. Die Bewertung erfolgte nach MISCHKE et al. (2008), mit den neuesten Änderungen der Software (**PHYTOSEE 5.1** vom Jan. 2014; Literatur dazu: RIEDMÜLLER et al. 2013; download von der website Dr. Ute Mischke, IGB → www.igb-berlin.de). Es wurden für die Bewertung mittels PHYTOSEE 5.1 die Monate März bis November einbezogen.

-24-

Die Bewertung wird mittels der Teilkomponenten "Biomasse", "Algenklassen", und "PTSI" (Phytoplankton-Taxon-Seen-Index) und optional des Diatomeen-Profundal-Indexes ("DI-PROF") durchgeführt (ein Überblick dazu findet sich bei MISCHKE et al. 2008):

Aus den drei Teilkomponenten "Biomasse", "Algenklassen" und "PTSI" wird, spezifisch für jeden Seetyp, mithilfe von Gewichtungsfaktoren der **Gesamtindex (PSI)** ermittelt. Fakultativ kann die Bewertung anhand des DI-PROF hinzugenommen werden (Gewichtungsfaktoren aller 4 Komponenten: Tab. 4). Es werden dabei die Werte der Teilindices, nicht die ökologischen Zustandsklassen, gemittelt. Der PSI wird mit einer Stelle hinter dem Komma dargestellt. Der Gesamtindex PSI wird, wie auch bei jedem Teilindex möglich, einer ökologischen Zustandsklasse zugeordnet (Tab. 4a). Zu beachten ist, dass beim DI-PROF die Seetypisierung im Vorfeld der Ermittlung des DI-PROFs eine andere war, als bei der Ermittlung der anderen Metrics (MISCHKE & NIXDORF 2008). Die Wichtungsfaktoren der neuen Version 5.1 haben sich deutlich gegenüber den letzen Versionen geändert.

Tab. 4: Gewichtungsfaktoren zur Ermittlung des deutschen Phyto-Seen-Index (PSI) für natürliche Seen des Tieflands (für Phytosee 5.1; RIEDMÜLLER et al. 2013).

See-	G-Faktor für In-	In- G-Faktor für In- G-Faktor für In-		G-Faktor für Index
typ	dex "Biomasse"	dex "Algenklasse"	dex "PTSI"	"Di-Prof"
10.1	4	3	3	1
10.2	4	3	3	1
13	4	3	3	3
11.1	4	3	2	2
11.2	4	3	2	2
12	4	3	2	2
14	4	3	2	1

Tab. 4a: Indexwerte und entsprechende Einstufung in ökologische Zustandsklassen für die Teilmetrics und den PSI (aus RIEDMÜLLER et al. 2013).

Indexwert	Zustandsklasse
0,5 - 1,5	1 = sehr gut (high)
1,5 - 2,5	2 = gut (good)
2,5 - 3,5	3 = mäßig (moderate)
3,5 - 4,5	4 = unbefriedigend (poor)
4,5 - 5,5	5 = schlecht (bad)

5. Ergebnisse Plankton

5.1 Phyto- und Zooplankton im Überblick

In Tab. 5 sind wichtige chemische und biologische Parameter für 2013 aufgelistet (Datenquelle: LLUR, ausgenommen das Phytoplankton-Biovolumen und das Zooplankton-Trockengewicht, das selbst ermittelt wurde).

Tab. 5: Auswahl einiger relevanter biologischer u. chemischer Parameter zur Charakterisierung der untersuchten Seen: **Mittelwerte März-Nov 2013.**- <u>Erläuterungen</u>: Chlorophyll a (Chl.a) und Phytoplankton-Biovolumen (BV) wurden aus der euphotischen Zone, das Zooplankton mittels Vertikalzug aus einer definierten Wassersäule entnommen; die Nährstoffe Gesamtphosphor (Ges P), Gesamtstickstoff (GesN) und Silizium (SiO2-Si)sowie die Werte der Leitfähigkeit (LF) wurden aus 1 m Tiefe entnommen; ST = Sichttiefe. Die Seen sind alphabetisch aufgelistet (Datenquelle: LLUR, außer Daten des Blankensees, Hansestadt Lübeck). (*): Es wurde nur 1 Probe untersucht.

		Phytopl BV	Chl.a	Zoopl TG	TP	TN	ST	SiO2-Si	LF
MS-Nr	M_Name1	(mm3/l)	(µg/l)	(mg/l)	mg/l	mg/l	m	(mg/l)	(mS/m)
129027	Behlendorfer See, tiefste St.	1,0	10,1	0,16	0,024	1,44	1,8	0,13	31,5
129219	Blankensee (tiefste Stelle)	2,8	26,3	0,41	0,044	1,13	1,6	0,56	15,6
129255	Bothkamper See, östlich Bissee	25,9	211,6	(*)	0,352	4,00	0,3	1,27	36,2
129081	Bothkamper See, tiefste St.	23,4	191,2	2,13	0,320	3,46	0,3	1,33	33,3
129004	Bültsee, tiefste Stelle	0,9	10,4	0,13	0,025	0,70	2,1	0,12	13,4
129009	Dobersdorfer See vor Schlesen, tiefste Stelle	2,5	18,9	0,19	0,042	1,23	1,1	1,12	42,7
129002	Garrensee, tiefste Stelle	0,6	5,0	0,06	0,014	0,55	2,9	0,06	5,7
129172	Großer Binnensee, tiefst. St.	9,8	61,1	1,15	0,111	1,69	0,7	8,44	64,0
129102	Großer Plöner See, Südteil, tiefste Stelle	2,9	13,7	0,08	0,038	0,64	2,4	0,92	40,7
129008	Großer Segeberger See, tiefste Stelle	1,4	8,5	0,19	0,045	0,66	2,2	1,06	76,1
129052	Ihlsee, tiefste Stelle	0,5	5,4	0,06	0,011	0,53	3,5	0,08	13,3
129160	Neversdorfer See, tiefste St.	5,5	38,3	0,34	0,064	3,10	0,8	0,43	39,7
129063	Pinnsee, tiefste Stelle	7,1	51,9	0,14	0,029	0,70	2,2	0,10	9,6
129192	Ukleisee, tiefste Stelle	4,8	23,2	0,15	0,028	1,26	1,7	1,51	41,8
129050	Vierer See ,tiefste Stelle	2,9	13,3	0,12	0,040	0,89	2,3	0,69	46,5

Phytoplankton

Zwischen der Chlorophyll-a-Konzentration und Phytoplanktonbiomasse lässt sich für den Datenbereich ein hoher linearer Zusammenhang nachweisen ($r^2 = 0.89$; n = 106) (Abb. 1).

Der Anteil des Chlorophyll-*a* am Phytoplankton-Biovolumen liegt bei Betrachtung aller 106 Einzelwerte im Bereich 0,3 bis 2,18 %. Der Median der Einzelproben beträgt 0,80 %, das arithmetische Mittel 0,92 %. Bei den Untersuchungen schleswig-holsteinischer Seen in den vergangenen Jahren wurden ähnliche Werte ermittelt (Mediane: ARP & MAIER 2012: 0,70; ARP, KASTEN & MAIER 2011: 0,66; ARP, KASTEN & MAIER 2010: 0,76; ARP & MAIER 2009: 0,70 %; KASTEN & MICHELS 2008: 0,82 %; ARP & DENEKE 2007: 0,76 %). In Seen der

Scharmützelseeregion in Brandenburg wurden von NIXDORF & RÜCKER (2013) etwas geringere Anteile ermittelt (Median verschiedener Seen des Bereichs mesotroph - polytroph: 0,4-0,8%).

-26-

Bei geringen Planktongehalten liegt der Anteil des Chlorophyll-*a* tendenziell leicht höher als bei höheren Gehalten. Dies deckt sich in der Tendenz mit anderen Untersuchungen, u.a. von KASPRZAK et al. (2000) in Nordbrandenburg und Seendaten der Scharmützelregion in Brandenburg (NIXDORF & RÜCKER 2013).

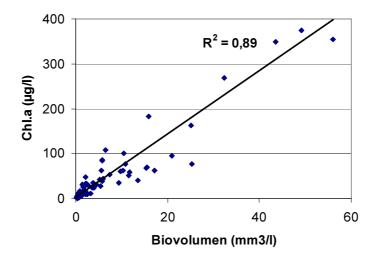
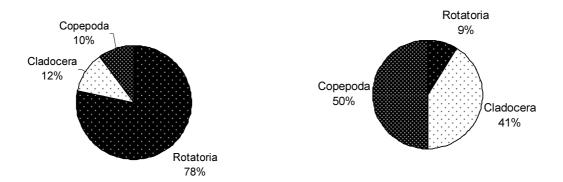



Abb. 1: Vergleich der Phytoplankton-Biovolumina und Chlorophyll *a*-Konzentrationen von 106 Proben aus 14 Seen (15 Messstellen) in Schleswig-Holstein aus dem Jahr 2013 (Einzelwerte).

Zooplankton

In den untersuchten Seen wurden insgesamt 81 Metazooplankton-Taxa nachgewiesen, darunter 46 Rädertiere-, 20 Cladoceren- und 15 Copepoden-Taxa. Im Mittel wurden 37 Taxa pro See erfasst. Hinsichtlich der Abundanz stellen die Rotatorien mit durchschnittlich 78 % den überwiegenden Teil des Metazooplanktons (Abb. 2, links). Bei der Biomasse kehrt sich das Bild um; hier stellen die Crustaceen mit 91 % bei weitem den größten Biomassen-Anteil (Abb. 2, rechts).

-27-

Abb. 2: Durchschnittliche Abundanz-Anteile (links) sowie durchschnittliche Biomassen-Anteile (rechts) der 3 taxonomischen Großgruppen: Mittelwert von allen 2013 untersuchten Seen.

Die mittlere Biomasse (berechnet über alle untersuchten Seen) liegt bei 377 $\mu g \ L^{-1}$ und damit im eutrophen Bereich (TGL 1982). Der mittlere GIC (bzw. MCM) über die Vegetationsperiode liegt mit 4,9 $\mu g \ Ind.^{-1}$ (Sommermittel 4,1 $\mu g \ Ind.^{-1}$) im unteren, moderaten Bereich, wobei 3 Seen (Garrensee, Gr. Segeberger See, Neversdorfer See) einen hohen GIC (> 7 $\mu g \ Ind.^{-1}$) aufweisen, was auf schwache Fischeffekte in diesen Seen hinweist.

Das mittlere Z / P in den Sommermonaten liegt mit Ausnahme des Behlendorfer Sees unter 50 % d⁻¹, in 4 Seen sogar unter 10 % d⁻¹ was für einen ungünstigen Umsatz von Phytoplanktonin Zooplanktonmasse zumindest während der Sommermonate spricht.

Im Folgenden werden ab Kap. 5.4 für jeden See **wichtige** jahreszeitliche Trends der Phytound Zooplanktonentwicklung seeweise beschrieben, mit Nennung der Hauptarten des Freiwassers und zusätzlich beim Phytoplankton den wichtigen Arten der gesondert an einem Termin entnommenen Profundaldiatomeen. Zu Beginn jedes Seekapitels werden die wichtigen Seekenndaten in einer Übersicht incl. Tiefenkarte und Einzugsgebiet dargestellt (Daten vom LLUR; Abbildungen aus: www.umweltdaten.landsh.de/nuis/wafis/seen/seenalle.php).

Die Bewertung der einzelnen Seen und Messstellen im Rahmen der WRRL anhand des Phytoplanktons (DI-PROF und Phyto-Seen-Index) wird in den folgenden 2 Kapiteln, **Kap. 5.2** und 5.3, dargelegt.

Alle gefundenen Taxa mit Angabe des Erstbeschreibers sind im **Anhang** aufgelistet, beim Phytoplankton getrennt nach einerseits den Taxa der Lugolprobe inkl. der Pelagialdiatomeen des Präparats (Kap. 11.3) und andererseits den Diatomeen des Profundalschlamms (Kap. 11.4).

5.2 Ermittlung des Diatomeen-Index (DI-PROF) und Bewertung

5.2.1 Ergebnisse zum DI-PROF-Ist

Von 12 der 13 Proben des Profundalschlamms 2013 wurden mikroskopische Analysen durchgeführt und anschließend der Di-Prof (=Diatomeenindex auf der Basis planktischer Diatomeen aus dem Profundal) berechnet.

Die Arten sind im Anhang je Messstelle aufgelistet. Im Ergebnisteil Kap. 5.3–5.17 sind für jeden See die wichtigen Arten im Vergleich zu den Pelagialdiatomeen der Lugolprobe beschrieben.

Die Werte für den Di-Prof (DI-PROF Ist) für das Jahr 2013 schwanken zwischen 1,1 (Garrensee) und 6,5 (Bothkamper See). Die Anzahl der gefundenen Indikatorarten liegen im Bereich 4 (Garrensee) bis 14 (Pinnsee) (Tab. 6)

Tab. 6: Istzustand des DI-PROF und daraus resultierende ökolog. Zustandsklasse (Bewertung Di-Prof = Note).für 12 Seen in Schleswig-Holstein für das Jahr 2013 (Auflistung alphabetisch nach Seename. Erläuterungen: H/G = Referenztrophie an der Grenze zwischen Zustandsklasse 1 (high) und 2 (good).

	See-		DI- PROF	Bew. DI-	DI- PROF	Bew DI- PROF	N Indik Arten
Messstellenname	typ	H/G	Ist	Prof	verbal	(ÖZK)	DI-PROF
Behlendorfer See, tiefste Stelle	13	1,75	2,5	3,1	mäßig	3	11
Bothkamper See, tiefste Stelle	11	2,5	6,5	9,6	schlecht	5	9
Dobersdorfer See vor Schlesen, tiefste Stelle	14	2,5	3,1	2,7	mäßig	3	9
Garrensee, tiefste Stelle	13	1,75	1,1	0,3	sehr gut	1	4
Großer Binnensee, tiefste Stelle	11	2,5	4,2	4,8	schlecht	5	11
Großer Plöner See, Südteil, tiefste Stelle	13	1,75	2,5	3,1	mäßig	3	11
Großer Segeberger See, tiefste Stelle	14	2,5	3,0	2,5	gut	2	11
Ihlsee, tiefste Stelle	13	1,75	2,1	2,2	gut	2	5
Neversdorfer See, tiefste Stelle	11	2,5	3,1	2,7	mäßig	3	12
Pinnsee, tiefste Stelle	10	2,25	2,4	1,8	gut	2	14
Ukleisee, tiefste Stelle	10	2,25	2,3	1,6	gut	2	12
Vierer See ,tiefste Stelle	10	2,25	2,5	2,1	gut	2	12

5.2.2 Seenbewertung anhand des DI-PROF

Anhand des Diatomeen-Profundal-Indexes (DI-PROF Ist) kann nach SCHÖNFELDER 2006 (siehe auch MISCHKE et al. 2008) eine Bewertung durchgeführt werden (Einstufung der Seen in eine ökologische Zustandsklasse = DI-PROF-Bewertung = DI-PROF-Note). Dies wurde für alle Stellen 2013 durchgeführt. Danach wurde 1 Stelle mit "sehr gut" bewertet (Garrensee), 5 Stellen mit "gut", 4 Stellen mit "mäßig" und 2 Stellen mit "schlecht"(Bothkamper See, Gr. Binnensee) eingestuft (Tab. 6). Die letztgenannten 2 Seen sind sehr flach (< 3 m mittlere Tiefe) und haben die höchsten Phosphorgehalte aller untersuchten Seen 2013 (im Mittel > 0,1 mg/l TP, Tab. 5).

5.3 Ergebnisse zum Phyto-Seen-Index (PSI)

Von allen 15 Messstellen aus 14 Seen wurde mittels der mikroskopisch erhobenen Daten der Lugol- und der Profundalproben abschließend der Phyto-Seen-Index (PSI) berechnet (Phyto-See 5.1). Im Vorfeld wurden die Messstellen einem Phytoplanktontyp nach MISCHKE et al. (2008) (siehe auch RIEDMÜLLER et al. 2013) zugeordnet. Für die Bewertung wurde der Zeitraum März-November verwendet. In diesem Zeitraum wurden 2013 alle Proben genommen.

Es werden für die PSI-Berechnung üblicherweise nur solche Seen analysiert, die nach MATHES et al (2005) eine Fläche > 50 ha aufweisen und kalkreich sind (> 15 mg/l Ca). Dies waren 2013 acht Seen. 6 weitere Seen waren kleiner als 50 ha (Tab. 1). Von diesen 6 Seen können der Blankensee, Bültsee, Ihlsee und Ukleisee uneingeschränkt bezüglich der Qualitätskomponente (QK) Phytoplankton eingestuft werden, da sich Seen dieses Größenbereichs und Kalkgehaltes nicht anders als die natürlichen Seen > 50 ha des Tieflands in der Beziehung zum Gesamtphosphorgehalt je Seetyp verhalten (mündl. Mitteilung von Dr. UTE MISCHKE, IGB Berlin, April 2014). Anders ist es beim Garrensee und Pinnsee. Der 18 ha große Garrrensee weist einen besonders niedrigen Kalkgehalt auf (ca. 5 mg/l Ca) und liegt damit deutlich unter der Grenze von 15 mg/l Ca. Er ist eingeschränkt bewertbar. Der Pinnsee ist noch deutlich kleiner und kalkärmer (1-3 mg/l). Die Bewertung dieses Sees ist eher testweise zu betrachten, zu erkennen auch an der zu geringen Anzahl von Indikatorarten, d.h. einem ungültigen PTSI (Tab. 7).

Bei den 13 bewerteten Messstellen (12 Seen) konnten alle anderen geforderten Kriterien der Seenbewertung mittels Phytoplankton (Probenanzahl, Anzahl Indikatorarten) erfüllt werden.

PSI der Messstellen im Überblick

Die Bewertung anhand des Phytoplanktons mit dem Phyto-See-Index (PSI) ergab für die einzelnen Messstellen folgende Einstufung, ohne Berücksichtigung des DI-Prof (Tab. 7):

- **Sehr guter** ökologischer Zustand für 2 Seen (Ihlsee und Bültsee).
- **Guter** ökologischer Zustand für 3 Seen (Behlendorfer See, Blankensee und Großer Segeberger See).

- Mäßiger ökologischer Zustand für 5 Seen (Dobersdorfer See, Gr. Plöner See, Neversdorfer See, Ukleisee und Vierer See)
- **Unbefriedigender** ökologischer Zustand für den Gr. Binnensee.
- Schlechter ökologischer Zustand für die 2 Messstellen des Bothkamper See, wobei die Stelle bei Bissee wegen einer zu geringen Anzahl Proben (5) eingeschränkt bewertet wurde. Minimum wären 6 Proben.
- Der Garrensee (Bewertung "gut") und Pinnsee ("unbefriedigend) wurden mit aufgeführt, deren Bewertung ist jedoch nicht gültig (Pinnsee) bzw. eingeschränkt (Garrensee) (Tab. 7).

Beim PSI mit DI-PROF (der DI-PROF ist fakultativ; an 3 Stellen wurde kein DI-PROF ermittelt), ergeben sich in Relation zum PSI ohne DI-PROF maximal Verschiebungen um drei Zehntel, in der Regel weniger (Tab. 7).

Tab. 7: Gesamtbewertung (PSI ohne DI-PROF und PSI mit DI-PROF) und mittlere Anzahl der Indikatoraten **für 15 Messstellen in 14 Seen** in Schleswig Holstein für das Jahr 2013 (die Bewertung vom Garrensees und Pinnsees ist eingeschränkt bzw. ungültig (*kursiv* und in Klammern, Erklärung siehe Text). Auflistung alphabetisch nach Seename.

Typ_Nr	Gewässername	PSI ohne DI-PROF	Gesamtbe- wertung verbal stufig	PSI mit DI- PROF	Beprobung konform?	N Indi- kator- taxa
PP 13	Behlendorfer See, tiefste Stelle	1,8	Gut	2,1	ok	10,3
PP 11.2	Blankensee (tiefste Stelle)	2,1	Gut		ok	7,9
PP 11.2	Bothkamper See, östlich Bissee	5,0	schlecht		Nur 4-5 Proben - Bewertung unsicher	13,6
PP 11.2	Bothkamper See, tiefste Stelle	5,0	schlecht	5,1	ok	13,7
PP 11.2	Bültsee, tiefste Stelle	0,8	sehr gut		ok	10,3
PP 14	Dobersdorfer See vor Schlesen, tiefste Stelle	2,7	Mäßig	2,7	incl. Novem- berprobe	17,3
PP 13	Garrensee, tiefste Stelle	(1,5)	Gut	(1,3)	ok	7,1
PP 11.2	Großer Binnensee, tiefste Stelle	3,9	unbefried.	4,1	ok	19,4
PP 13	Großer Plöner See, Südteil, tiefste Stelle	3,5	Mäßig	3,4	incl. Novem- berprobe	11,8
PP 14	Großer Segeberger See, tiefste Stelle	1,8	Gut	1,9	ok	11,4
PP 13	Ihlsee, tiefste Stelle	1,4	sehr gut	1,6	ok	12,6
PP 11.1	Neversdorfer See, tiefste Stelle	3,4	Mäßig Gesamtindex	3,3	incl. Märzprobe	14,6
PP 10.1	Pinnsee, tiefste Stelle	(4,0)	ohne PTSI Metrik ungültig	(3,7)	ok	3,3
PP 10.1	Ukleisee, tiefste Stelle	2,7	Mäßig	2,6	ok	9,4
PP 10.1	Vierer See ,tiefste Stelle	2,7	Mäßig	2,6	ok	11,3

Einzelindices im Überblick

Die vier Teilmetrics, aus denen sich der PSI zusammensetzt (Biomasse, Algenklassen, PTSI und DI-PROF), können auch einzeln einer ökologischen Zustandsklasse zugeordnet werden (siehe auch Methodik Kap. 4.3). Der DI-PROF ist fakultativ. Dabei zeigt sich bei einigen Seen eine größere Heterogenität zwischen einzelnen Teil-Metrics, besonders beim Behlendorfer See, Dobersdorfer See, Gr. Segeberger See und Ukleisee (Tab. 8). Insgesamt ist die Heterogenität geringer als bei Daten früherer Jahre mit älteren Versionen des PSI. Es zeigt sich auch, daß durch die im Mittel stärkere Wichtung der Teilmetriks Algenklasse, PTSI und Di-Prof mit der software PHYTOSEE 5.1 gegenüber früheren Versionen diese weniger stark vom PSI abweichen. Die PTSI-Bewertung und die DI-PROF-Note (=Di-Prof-Bew) weisen im Mittel die höchsten Werte auf (Tab. 8).

-31-

Tab. 8: Bewertung (PSI und Einzelmetrics) für 15 Messstellen in 14 Seen in Schleswig-Holstein für das Jahr 2013 (die Bewertung vom Garrensee und Pinnsee ist eingeschränkt bzw. ungültig (kursiv und in Klammern, Erklärung siehe Text). (Auflistung alphabetisch nach Seename.

Typ_Nr	Gewässername	PSI ohne DI-PROF	PSI mit DI- PROF	Biomasse- Metrik	Alg.klass Metrik	PTSI- Bew.	DI- PROF- Bew.
	Behlendorfer See,						
PP 13	tiefste Stelle	1,8	2,1	2,3	1,4	1,4	3,1
PP 11.2	Blankensee (tiefste Stelle)	2,1		2,2	2,1	1,9	
	Bothkamper See, östlich Bis-						
PP 11.2	see	5,0		5,4	4,9	4,5	
PP 11.2	Bothkamper See, tiefste Stelle	5,0	5,1	5,3	5,0	4,6	5,5
PP 11.2	Bültsee, tiefste Stelle	0,8		0,8	0,5	1,4	
PP 14	Dobersdorfer See vor Schle- sen, tiefste Stelle	2.7	2.7	2.7	2.1	2.6	2.0
	·	2,7	2,7	2,7	2,1	3,6	2,8
PP 13	Garrensee, tiefste Stelle	(1,5)	(1,3)	1,7	0,5	2,3	0,5
PP 11.2	Großer Binnensee, tiefste Stelle	3,9	4,1	3,7	3,6	4,6	4,8
PP 13	Großer Plöner See, Südteil, tiefste Stelle	3,5	3,4	3,9	3,2	3,2	3,1
PP 14	Großer Segeberger See, tiefste Stelle	1,8	1,9	1,4	1,1	3,6	2,5
PP 13	Ihlsee, tiefste Stelle	1,4	1,6	1,4	0,5	2,4	2,2
	Neversdorfer See,				-	*	-
PP 11.1	tiefste Stelle	3,4	3,3	3,4	3,1	3,7	2,7
PP 10.1	Pinnsee, tiefste Stelle	(4,0)	(3,7)	5,0	2,7	1	1,9
PP 10.1	Ukleisee, tiefste Stelle	2,7	2,6	4,1	1,4	2,3	1,6
PP 10.1	Vierer See ,tiefste Stelle	2,7	2,6	3,2	1,9	2,8	2,1

5.4 Behlendorfer See

Stammdaten, limnochemische und -biologische Mittelwerte 2013 + Indices							
Seetyp (Plkt.)	VQ[km ² 10 ⁶ m ⁻³]	See-Fläche [km²]	Tiefe – mittel [m]	Tiefe – max [m]	th. Verweilzeit [a]		
13	1,0	0,63	6,2	15,4	3,3		
TP _{lm} [mg/l]	TN _{lm} [mg/l]	SiO ₂ -Si _{1m} [mg/l]	Sichttiefe [m]	Chl a [µg/l] Z _{integr.}	$BV[mm^3/l] Z_{integr.}$		
0,024	1,44	0,13	1,8	10,1	1,0		
ZooplTG (mg/l)	Z/P (TG/TG) (% / d) Juli-Aug.	Trophie-Index (RIEDMÜLLER et al 2013) für 2012	Trophie-Index (RIEDMÜLLER et al 2013) für 2013	PSI ohne DiProf (PhyoSee 5.1) 2012	PSI ohne DiProf (PhyoSee 5.1) 2013		
0,16	57	2.6 – e1	2,5 – m2	2,0 - gut	1,8 - gut		
Tiefenkarte und oberirdisches Einzugsgebiet							
Behlendorfer See Behlendorf Behlendorf							

-32-

Der relativ kleine Behlendorfer See liegt westlich von Ratzeburg in einer Senke und ist ein Grundmoränensee inmitten einer stark reliefierten Grundmoränenlandschaft, mit starker Zerlappung (Uferentwicklung 1,9). Das relativ kleine Einzugsgebiet ist vornehmlich landwirtschaftlich geprägt (weitere Informationen siehe auch ARP & KOPPELMEYER 2004 und 2005).

Im Dezember 2009 wurde der See restauriert (Nährstoffbindung mit mit dem Fällmittel Bentophos®; Daten und Informationen dazu beim LLUR). Neben dieser Nährstofffällung wurden zu der Zeit 4 t Weißfische entnommen. Die untere Grenze der submersen Makrophyten (UMG) hat durch diese Maßnahmen zugenommen, von 2,80 im Jahr 2004 auf ca. 4 m im Jahr 2012, ebenso der Deckungsgrad, von "spärlich" im Jahr 2004 bis 27% 2011 und 21% 2012 (PLAMBECK 2013).

2013 hat sich gegenüber den Vorjahren nichts verändert, sowohl in der UMG (4 m) als auch im Deckungsgrad der Submersen (im Mittel der 8 Transekte 25 %). Die Einstufung des Sees anhand der Makrophyten nach PHYLIB liegt seit 2010 konstant bei 3 (3,3-3,4) (STUHR, VAN DE WEYER et al 2013).

Der Behlendorfer See wurde nach der Nährstofffällung 2011 erstmalig im Freiwasser mesotroph eingestuft (m2). Im Jahr 2013 war der See ebenso mesotroph (m2), allerdings an der Grenze zum schwach eutrophen Zustand (e1).

5.4.1 Ergebnisse Phytoplankton

Zwischen April und Oktober 2013 wurden 7 tiefenintegrierte Mischproben (0-4 m bis 0-7 m) entnommen. Der See weist meist moderat erhöhte Chlorophyll a- Gehalte und relativ dazu geringe Biovolumina auf (Mittel des Chl.a-Anteils am Biovolumen = 1,1 %), mit Spitzenwerten für das Biovolumen von 2,0 mm³ l⁻¹ und 15 μg l⁻¹ Chl.a (Jahresmittel 1,0 mm³ l⁻¹ und 10 μg l⁻¹ Chl.a, Tab. 5). Es dominieren zahlreiche Algengruppen und Arten, in der ersten Jahreshälfte vor allem Cryptophyceen (Schlundalgen) und Haptophyceen (kleine Flagellaten), in der zweiten Jahreshälfte neben Cryptophyceen v.a. Dinophyceen (Hornalgen) und Cyanobakterien (Blaualgen) (Abb. 3). Im Rahmen der EU-WRRL wurde der See mittels der Qualitätskomponente (QK) Phytoplankton wie im Vorjahr mit **gut** bewertet (PSI ohne DI-PROF; genaueres zum PSI siehe Kap. 5.3).

Der Frühling wurde neben den Cryptophyceen (*Rhodomonas lacustris, Cryptomonas ero-sa/ovata/phaseolus* und *Cryptomonas marssonii*) durch *Chrysochromulina parva*, einen schnellwachsenden, kleinzelligen Flagellat aus der Gruppe der Haptophyceen, dominiert. Daneben waren subdominant die Bacillariophyceen mit mehreren pennalen und centralen Arten vertreten. Eine Ursache für die geringe Dominanz der Bacillariophyceen ist die insgesamt geringe Silikatkonzentration im Behlendorfer See. Es dominierten wie auch in den Vorjahren eine schmale pennale Form aus der *Fragilaria ulna angustissima* – Sippe, daneben v.a. centrale Formen der Gattung *Cylotella*, besonders *C. delicatula*.

Im Frühsommer nahmen die Cryptophyceen in der Dominanz und in der Biomasse zu. Daneben traten zunehmend Dinophyceen mit den 2 Hauptvertretern *Ceratium hirundinella* und Arten aus dem *Peridinium umbonatum*-Komplex hervor. Im Juli traten daneben erstmalig in höherer Dichte Chrysophyceen (Goldalgen) wie im letzten Jahr mit dem einzigen Verteter *Uroglena* und Cyanobakterien mit verschiedenen Arten, u.a. *Anabaena bergii, Snowella lacustris und Microcystis. Uroglena* und *Snowella* verweisen als Indikatortaxa auf eine geringe Trophie.

Im Spätsommer und Frühherbst August/September nahmen wie in vielen anderen Gewässern die Blaualgen in der Biomasse nochmal zu, hier jedoch mit insgesamt geringen Biomassen. Es dominierten im Behlendorfer See der sehr kleinzellige Picoplankter *Aphanocapsa*, desweiteren *Woronichinia naegeliana* und wie schon im Frühsommer *Snowella lacustris*. Die letztgenannten 2 Arten und *Ceratium hirundinella* waren die Taxa, die im letzten Untersuchungsmonat Oktober bei insgesamt abnehmenden Biomassen die Hauptbiomasse bildeten.

Insgesamt wurden im Behlendorfer See 2013 wie auch 2012 und 2011 neben den oben genannten Taxa weitere Arten mit Indikation für eine geringe Trophie gefunden, wobei die Anteile meist sehr gering waren. Dazu zählen u.a. *Bitrichia chodatii* aus der Gruppe der Chrysophyceen, *Coelosphaerium kuetzingianum*, und *Anabaena lemmermannii* aus der Gruppe der Cyanobakterien und schließlich *Wilea vilhelmii* und *Quadrigula pfitzeri* aus der Gruppe der Chlorophyceen. Die sehr nährstoffarme Verhältnisse anzeigende, relativ seltene Kie-

selalgenart *Cyclotella comensis, die 2012 erstmalig auftrat,* und die 2012 erstmalig in höheren Anteilen auftrtetende Art *Cyclotella ocellata*, die ebenfalls nährstoffarme Verhältnisse anzeigt, traten beide 2013 erneut auf.

-34-

Auch 2013 wurden wie in den Jahren zuvor **Tiefenchlorophyllmaxima (DCM)** beobachtet (Daten der Fluoreszenzsonde des LLUR), ausgeprägt erstmalig im Juli im Tiefenbereich von 7-9 m. Das DCM nahm in den Werten bis Oktober stetig zu, auf mehr als das Doppelte des Ausgangswertes im Juli. Im Oktober wurde das DCM im Bereich 8-10 m Tiefe ermittelt (die Werte sind nicht direkt mit Laborwerten zum Chl.a vergleichbar). Es wurden verschiedene Algengruppen im DCM ermittelt, u.a. die spektrale Gruppe "gemischt", wozu rotpigmentierte Blaualgen gehören können. Dies deckt sich mit Funden von *Planktothrix cf. rubescens* in der euphotischen Zone, die in geringer Abundanz gefunden wurden, was auch erklärlich ist, da das DCM unterhalb der Probentiefe des analysierten Phytoplanktons lag. Diese rotpigmentierte Blaualgenart ist ein typischer Vertreter der Schwachlichtalgen, die im unteren Metalimnion von mesotroph geschichteten Seen vorkommen. Im Behlendorfer See traten sie vor über 10 Jahren phasenweise gehäuft auf (ARP & KOPPELMEYER 2004 und 2005).

Die gesondert entnommene Probe der Profundaldiatomeen vom 30.9. 2013 wurde vor allem von Arten der Gattung *Cyclotella* dominiert (insg. über 60 % Anteil aller gefundenen Schalen), welche im Freiwasser auch gefunden wurden, jedoch in Relation zum anderen Plankton meist in sehr geringer Biomasse. Die wichtigen Arten im Profundalschlamm waren: Kleine Arten im Bereich 0-10 μm d (27 % Anteil), vermutlich u.a. *Cyclotella comensis*, desweiteren *Cyclotella balatonis* (23 % Anteil), *Cyclotella delicatula* (7 % Anteil) und *Cyclotella ocellata* (3,5 % Anteil). Weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF findet sich in Kap. 5.2.

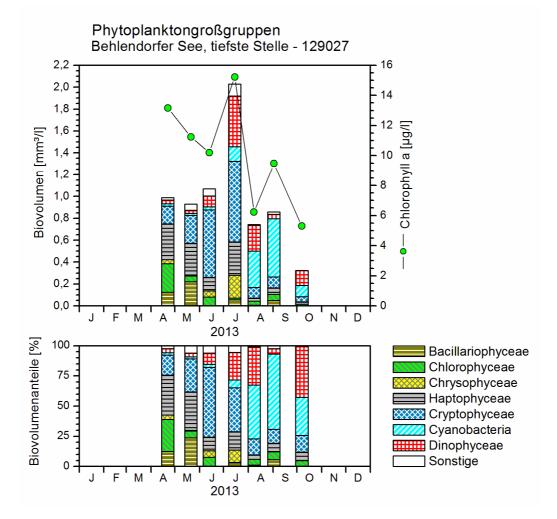


Abb. 3: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Behlendorfer Sees 2013. Oben: Absolute Biovolumina. Unten: Prozentuale Anteile.

5.4.2 Ergebnisse Zooplankton

Im Behlendorfer See wurden 41 Metazooplankton-Taxa (25 Rotatorien, 8 Cladoceren und 8 Copepoden) erfasst. An Protozoen wurden 5 Taxa differenziert, wobei das Urnentierchen (*Tintinnopsis*) im zeitigen Frühjahr überwiegt. Im Sommer sind große Ciliaten vorhanden, aber in geringer Abundanz (siehe unten). Larven der Büschelmücken (*Chaoborus* sp.) wurden in den Monaten Mai, August und September nachgewiesen. Der Behlendorfer See gehört damit zu den artenreicheren Seen.

Das **Rotatorienplankton** wurde im zeitigen Frühjahr (April) durch 3 Allerwelts-Taxa (*Keratella cochlearis*, *Kellicottia longispina* und *Keratella quadrata*) dominiert (zusammen >80 % der Rotatorienzönose). *Keratella cochlearis* (in den Formen *K. cochlearis*, *K. cochlearis tecta* und *K. cochlearis hispida*) bleibt praktisch den gesamten Untersuchungszeitraum über häufig. Zum Sommer hin kommen "Flossenrädertiere" (insbesondere *Polyarthra vulgaris*) stark auf. Eutrophierungszeiger, wie *Pompholyx sulcata* und Nahrungsspezialisten, wie Arten der Gattungen *Ascomorpha*, *Gastropus* und *Trichocerca* sind im Hochsommer und Herbst deutlich präsent. Litoralarten oder taxonomische Besonderheiten (Ausnahme 1 Exemplar von *Lo-*

phocharis salpina) waren in den Proben nicht vorhanden. Koloniebildende Rädertiere (Conochilus unicornis) traten von Mai bis Oktober auf. Die durchschnittliche Rotatorien-Abundanz lag bei 324 Ind. L⁻¹, das Abundanz-Maximum bei 951 Ind. L⁻¹ (Mai). Der Behlendorfer See liegt damit hinsichtlich der Rotatorienabundanz im mittleren bis hohen (mesotrophen bis eutrophen) Bereich.

Cladoceren sind im zeitigen Frühjahr (April) praktisch nicht vertreten. Im Mai bestimmen die Rüsselkrebse (Bosminen) mit > 95 % der Cladocerenzönose das Bild. Von Juni bis August kommen Daphnien stark auf, wobei Daphnia cucullata die aspektbestimmende Art ist. Rüsselkrebse treten in diesem Zeitraum in den Hintergrund, sind aber im Herbst wieder die (insbesondere mit Bosmina coregoni coregoni) die dominanten Cladocerentaxa. Raubcladoceren (Individuen des Glaskrebses Leptodora kindtii) waren von Juli bis September in den Proben vorhanden. Das Linsenkrebschen (Chydorus sphaericus) trat in geringer Abundanz im Juli und August auf. Die mittlere Abundanz der Cladoceren liegt bei knapp 19 Ind. L⁻¹, das Maximum bei 61 Ind. L⁻¹. Hinsichtlich der Cladoceren-Abundanz liegt der Behlendorfer See im eutrophen Bereich.

Das Copepodenplankton des Behlendorfer Sees ist (mit 8 Arten; siehe oben) relativ artenreich zusammengesetzt. In den Frühjahrsmonaten sind Arten der Gattung Cyclops (insbesondere Cyclops kolensis und Cyclops vicinus) stark vertreten. Im Sommer und Herbst dominieren die kleinen Taxa Mesocyclops leuckarti und Thermocyclops oithonoides, die in annähernd gleichen Anteilen auftreten. Neben den genannten Taxa kommen noch Thermocyclops crassus, Diacyclops bicuspidatus und Cyclops abyssorum in geringer Abundanz vor. Calanoide Ruderfußkrebse sind mit Eudiaptomus gracilis vertreten, spielen aber im aktuellen Untersuchungsjahr nur eine untergeordnete Rolle. Die durchschnittliche Abundanz der Copepoden liegt bei 22,5 (Cyclopoide) bzw. 1,5 Ind. L⁻¹ (Calanoide), die maximale Abundanz bei 46 (Cyclopoide bzw. 3 Ind. L⁻¹ (Calanoide). Die Abundanz der Copepoden gruppiert den See in den eutrophen Bereich.

Die Abundanzen der **Protozoen** sind niedrig < 15 Ind. L⁻¹). Große Ciliaten treten im späten Frühjahr mit maximal ca. 6 Ind. L⁻¹ auf.

Die mittlere **Biomasse** des Zooplanktons liegt im Behlendorfer See mit 158 µg L⁻¹ im unteren mesotrophen Bereich; maximal werden knapp 355 µg L⁻¹ erreicht (Abb. 4). Starke Massenbildner sind im Frühjahr (insbesondere März, April) die cyclopoiden Copepoden. Cladoceren werden ab Juni wichtig und stellen im August ca. 90% der Zooplanktonmasse. Die Rotatorien erreichen im Mittel 7, maximal ca. 18 % (Mai) der Gesamtbiomasse. Die Massenanteile der calanoiden Copepoden ist mit im Mittel nur 4 % niedrig.

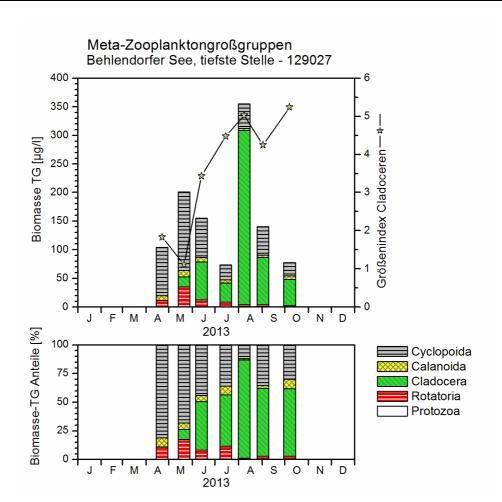


Abb. 4: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Behlendorfer See 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

Nahrungsnetz

Der Behlendorfer See liegt mit einem durchschnittlichen **Z/P** und Z/P Sommer von deutlich > 40 % d⁻¹ immerhin ca. im mittleren Bereich der untersuchten Seen. Der niedrigste Z/P Wert von knapp 8 % d⁻¹ – und damit schlechteste Umsatz von Phytoplankton- in Zooplankton-Masse - wurde im Hochsommer (Juli) gemessen und ist sicherlich mit auf die starke Präsenz der schlecht fressbaren Dinophyceen (und Chrysophyceen) sowie auf das Aufkommen der ebenfalls schlecht fressbaren Cyanobakterien (bei allerdings noch guter Präsenz der verwertbaren Schlundalgen) zurückzuführen. Der günstigste Umsatz von Phyto- in Zooplanktonmasse (ca. 100 % d⁻¹) ergibt sich für den Monat August, wobei effektive Grazer (Daphnien, insbesondere *D. cucullata*) in diesem Monat am stärksten vertreten sind und einen starken Fraßdruck auf das fressbare Phytoplankton ausüben, was sich z.B. in dem Rückgang der gut fressbaren Cryptophyceen bemerkbar macht. Nahrungslimitierung für die Daphnien herrscht allenfalls im Oktober. Ein Gleichgang zwischen Phytoplankton- und Zooplanktonmasse lässt sich nur grob nachvollziehen, obwohl der Phytoplanktonpeak im Juli (zeitlich verzögert) deutlich einen Peak der Zooplanktonmasse im August nach sich zieht was sicherlich auf die zum Juli hin ansteigende Menge der gut fressbaren Algen (Cryptophyceen) zurückzuführen ist.

Arp, Maier & Michels -38- Juli 2014

Der **Cladoceren-Größenindex** (GIC) liegt im Mittel bei 3,63 µg Ind. im August und Oktober werden allerdings Werte von 5 bzw. 5,3 µg Ind. erreicht (Abb. 4), was fast der Masse einer 1 mm langen Daphnie entspricht.

5.4.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Bei Phosphorwerten um 0,03 mgl⁻¹ TP bis Juli und unter 0,02 mgl⁻¹ TP ab August bis Oktober 2013 waren die Planktongehalte 2013 wie auch schon 2012 und 2011 leicht erhöht. Die ökologische Einstufung für 2013 anhand der QK Phytoplankton ist mit 1,8 "gut". Der Wert ist plausibel.

Das Phytoplankton 2004, 2010, 2011 und 2012 wurde vom gleichen Bearbeiter analysiert. Im Vergleich der Daten von 2004 bis 2013 (ARP 2005a, ARP, KASTEN & MAIER 2011, ARP & MAIER 2012, ARP, MAIER & MICHELS 2013) zeigt die Reduzierung des Phosphors durch die Verwendung des Fällmittels Bentophos® Ende 2009 seitdem eine deutliche Wirkung beim Phytoplankton, insbesondere seit 2011. Während sich der Planktongehalt im Jahr 2010 trotz einer deutlichen Reduzierung des Phosphors gegenüber 2004 nicht sehr deutlich reduzierte, trat der Effekt 2011 bis 2013 deutlich hervor (Tab. 10, Abb. 5).

Die Veränderungen in den letzten 10 Jahren spiegeln sich sowohl im Trophieindex und anhand der QK Phytoplankton noch deutlicher im Phyto-See-Index (PSI) wider (der PSI 2004 gilt wegen ungültigem Phytoplankton-Taxon-Seen-Index (PTSI) eingeschränkt). Der Behlendorfer See wird seit 2011 bezüglich Phytoplankton "gut" bewertet. Es scheint ein vorübergehender Endpunkt in der Höhe und Zusammensetzung des Phytoplanktongehaltes erreicht worden zu sein (Tab. 9).

Tab. 9: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den **Behlendorfer See.**- Erläuterungen: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

Behlendorfer See (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2004	1,4	0,057	21,2	2.9	3,3	(3,3)
2010	2,6	0,023	18,1	2,0	2,5	3,1
2011	2,6	0,027	8,2	0,8	2,3	2,3
2012	1,8	0,024	13,4	1,2	2,6	2,0
2013	1,8	0,024	10,1	1,0	2,5	1,8

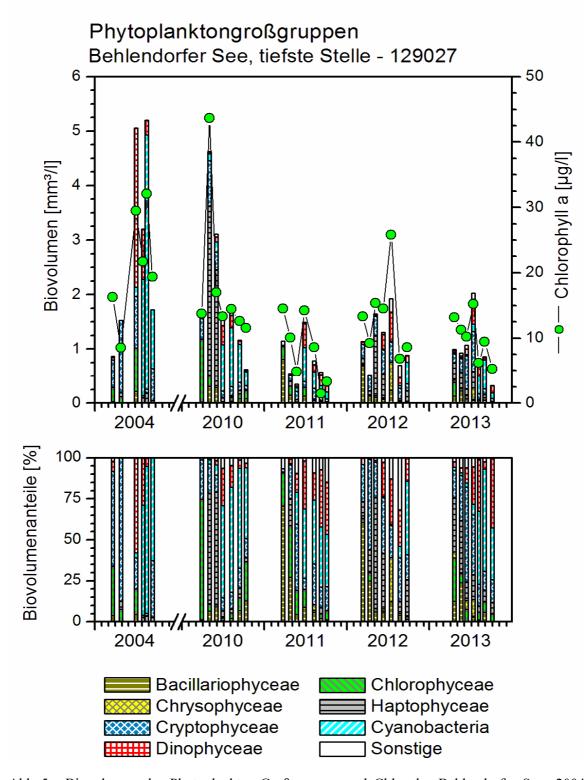


Abb. 5: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Behlendorfer Sees 2004 und 2010-2013. <u>Oben</u>: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

In der taxonomischen Entwicklung des Phytoplanktons des Behlendorfer Sees zeigt sich ebenfalls ein Trend von 2004 über 2010 bis 2011-2013.

Im Jahr 2004 dominierten im Sommer Arten höherer Trophieansprüche, v.a. verschiedene Nostocales aus der Gruppe der Cyanobakterien (*Aphanizomenon gracile* und *Anabaena macrospora*). Im Gegensatz dazu traten 2010 bis 2012 bei den Cyanobakterien eher picoplanktische Formen wie *Aphanotece, Aphanocapsa* und Cyanodictyon hervor (Indikatoren geringer Trophie). Auch wenn 2010 bis 2013 Arten mit hohen Trophieansprüchen in teils erhöhten Anteilen auftraten (vor allem *Microcystis* und *Woronichina naegeliana*), so war ihr Gesamtbiovolumen doch deutlich geringer als die Biomasse der Nostocales 2004. Zudem nahm die Zahl der Arten mit geringen Trophieansprüchen von 2004 zu 2010 und nochmals von 2010 zu 2011-13 zu. Im Jahr 2013 wurden großteils die gleichen Arten mit geringem Trophieanspruch wie 2011 und 2012 gefunden. So traten 2013 wie auch 2012 *Cyclotella comensis* und *Cyclotella ocellata* (2010 nur als Einzelfund) hervor, zwei Vertreter geringer Trophie. Dies gilt besonders für *C. comens*is, die auf eine sehr geringe Trophie verweist und zudem relativ selten auftritt.

Ebenso ist ein gemeinsames Merkmal aller untersuchten Jahre das **Tiefenchlorophyll-Maximum** (=**DCM**) (Fluoreszendaten des LLUR), wobei der Hauptpeak von 2002 über 2010 bis 2011-13 immer weiter absank, von etwa 5-7 m Tiefe 2002 (ARP & KOPPELMEYER 2004 und 2005) über ca. 6,5 – 8,5 m im Jahr 2010 (ARP, KASTEN & MAIER 2011) bis ca. 9 – 10 m Tiefe 2011 und 7,5 – 9 m im Jahr 2012. Im Jahr 2013 lag der Peak im Bereich 7 – 10 m.

Ausgeprägtere DCMs finden sich im Behlendorfer See immer erst ab August, wenn das Metalimnion sich weiter nach unten verlagert und in sich stabiler ist. Bei steigenden Sichttiefen ab 2010 nach der Bentophos®-Maßnahme sind die optimalen Wachstums-Bedingungen für die lichtschwachen Arten des DCM eher im unteren Metalimnion (2002 im oberen Metalimnion). Das bedeutet auch ein zeitlich stabileres und länger andauerndes DCM als vor 2010. Es scheint so zu sein, dass nach dem Jahr 2010 das DCM in seiner Ausprägung zugenommen hat.

Zooplankton

Der Behlendorfer See wurde bereits 2010 bis 2013 vom gleichen Bearbeiter untersucht. Angaben zur Biomasse liegen von ARP, KASTEN & MAIER (2011), ARP & MAIER (2012) und ARP, MAIER & MICHELS (2013) vor. Im Jahr 2004, als der See noch eutroph war, wurde das Zooplankton von Peer Martin gezählt, wobei nur Abundanzen ermittelt wurden (ARP 2005a).

Beim Behlendorfer See ergibt die Zooplankton-Biomasse im aktuellen Untersuchungsjahr – wie im Vorjahr – nach TGL (1982) die Einstufung mesotroph, während im Jahr 2011 der See noch als (schwach) eutroph charakterisiert wurde. Biomassen-Angaben vor der Bentophos®-Behandlung im Jahr 2009 liegen nicht vor. Die Reduzierung der Nährstoffe im Jahr 2009 dürfte aber sicherlich einen Rückgang der Zooplankton-Biomasse zum Jahr 2010 hin zur Folge gehabt haben. Im Jahr 2011 erfolgt ein Biomassenanstieg und im Folgejahr 2012 sowie im aktuellen Jahr wieder ein Biomassenrückgang, der in erster Linie auf den fehlenden bzw. schwach ausgeprägten Daphnien-Peak im Frühjahr (siehe unten) zurückzuführen ist. Auch im aktuellen Untersuchungsjahr 2013 sind große Filtrierer (Daphnien) in den Frühjahrsmonaten April und Mai praktisch nicht vertreten. Letztere spielen erst ab Juni, insbesondere aber im August eine wichtige Rolle. Eutrophierungszeiger (*Pompholyx sulcata* bei den Rotatorien oder *Cyclops vicinus* bei den Copepoden) sind im aktuellen Jahr durchaus deutlich präsent. Auffällig ist der niedrige Massenanteil der calanoiden Copepoden in diesem See, der ebenfalls

in Richtung eutropher Bedingungen zeigt. Erfreulich im aktuellen Untersuchungsjahr ist - wie bereits genannt - die relativ starke Präsenz der Daphnien im Hochsommer, was sich auch im GIC niederschlägt, der in dieser Zeit immerhin auf ca. 5 µg Ind. (knapp Masse einer 1 mm Daphnie) ansteigt. Zusammen mit der Präsenz von Büschelmückenlarven und Raubcladoceren spricht dies für einen allenfalls moderaten Fraßdruck durch Fische. Ein saisonaler Ablauf nach PEG Modell ist allenfalls ansatzweise zu erkennen bzw. ähnelt "eher" dem PEG Modell für oligotrophe Seen. Der Cladoceren Peak im Frühjahr bleibt aus bzw. ist nur äußerst schwach ausgeprägt. Ein ausgeprägtes Klarwasserstadium wurde evtl. wegen des groben Probenahme-Rasters nicht erfasst. Der Umsatz von Phyto- in Zooplanktonmasse liegt im insgesamt moderaten Bereich.

-41-

Die schlechtesten Umsatzraten im aktuellen Untersuchungsjahr (**Z/P** < 10% d⁻¹) ergeben sich – aufgrund einer für das Zooplankton eher weniger günstigen Phytoplanktonzusammensetzung (siehe Steckbrief) - für den Monat Juli. Möglicherweise wurde beim Juli-Termin auch der Zeitpunkt nach dem Klarwasserstadium mit Zusammenbruch der Filtrierer erwischt. Der Fraßdruck auf das fressbare Phytoplankton war sicherlich im Monat August - aufgrund der starken Präsenz von effektiven Filtrierern - am deutlichsten. Insgesamt lassen sich "gewisse Parallelen" zum Vorjahr, was den zeitlichen Verlauf der Umsatzraten (Phytoplankton- in Zooplanktonmasse) angeht und was die Höhe der Z/P Relation angeht, feststellen. Das günstigste Z/P Verhältnis war im Jahr 2011 festzustellen. Über die Jahre 2010 bis 2013 ist nach zunächst größeren Arten eine Entwicklung hin zu kleineren, weniger effektiven Filtrierern hin festzustellen.

Der Cladoceren-Größenindex (**GIC**) fällt von 8,6 bzw. 7,9 μg Ind. ⁻¹ in den Jahren 2010 und 2011 auf etwa 4 μg Ind. ⁻¹ in den letzten beiden Jahren ab (Tab. 10). Der hohe GIC in den ersten Jahren nach der Bentophos®-Fällung ist vermutlich auf einen geringen Fraßdruck durch Fische zurückzuführen, da gleichzeitig mit der Bentophos®-Behandlung im Jahr 2009 insgesamt ca. 4 Tonnen Fische entfernt wurden (PLAMBECK 2013). Im Jahr 2004 (vor der Bentophos®-Behandlung) fallen vor allem die deutlich höheren Abundanzen der Filtrierer (Cladoceren) im Frühjahr (April), sowie die Dominanz von *Diaphanosma brachyurum* (Art mit besonders feiner Maschenweite und Bakterienfiltrierer) bei gleichzeitig niedrigerer Cladocerendichte im Sommer 2004 gegenüber 2013 auf.

Tab. 10: Vergleich wichtiger Parameter (Jahresmittel) des Zooplanktons im Vergleich 2013 mit früheren Jahren für den **Behlendorfer See.**- <u>Erläuterungen</u>: GIC = Größenindex Cladoceren. Z/P = Zoopl.- zu Phytoplanktonbiomasse auf Trockengewichts-Basis.

Behlendorfer See	2010	2011	2012	2013
BIOMASSE (µg L-1)	181	350	176	158
% Rotatorien	2	3	8	7
% Cladoceren	41	55	28	50
% Calanoide	9	19	12	4
% Cyclopoide	47	23	53	39
GIC (µg Ind1)	8,6	7,9	4,6	3,6
Z/P Veg.P (% / d)	24	165	46	44
Z/P Sommer (% / d)	26	139	41	57

5.5 Blankensee

Stammdaten, limnochemische und -biologische Mittelwerte 2013 + Indices								
Seetyp Plkt.	VQ [km ² 10 ⁶ m ⁻³]	See-Fläche [km²]	Tiefe – mittel [m]	Tiefe – max [m]	th. Verweilzeit [a]			
88.3 (11.2)	7,6	0,23	1,6	2,7	0,4			
TP _{lm} [mg/l]	TN _{1m} [mg/l]	SiO ₂ -Si _{1m} [mg/l]	Sichttiefe [m]	Chl a [µg/l] 1 m	BV [mm³/l] 1 m			
0,044	1,13	0,56	1,6	26,3	2,8			
ZooplTG (mg/l)	Z/P (TG/TG) (% / d) Juli-Aug.	Trophie-Index (RIEDMÜLLER et al 2013) für 2012	Trophie-Index (RIEDMÜLLER et al 2013) für 2013	PSI ohne DiProf (PhyoSee 5.1) 2012	PSI ohne DiProf (PhyoSee 5.1) 2013			
0,41	20	3,0 - e1	3,2 – e2	(1,6) - gut	(2,1) - gut			
Tiefenkarte (links unten) und oberirdisches Einzugsgebiet (rechts unten)								
Tiefenkarte (links unten) und oberirdisches Einzugsgebiet (rechts unten) Blankensee 15.5 Plankensee 15.5 Plankensee 15.5								

Der sehr flache und relativ kleine Blankensee (< 50 ha) liegt 13 km südlich Lübeck im Ostholsteinischen Seen- und Hügelland und weist ein relativ zum Seevolumen sehr großes Einzugsgebiet auf (VQ = 7,6). Aufgrund seiner Lage inmitten einer Heide- und Moorlandschaft wird von früheren nährstoffarmen Verhältnissen ausgegangen (HEINZEL & MARTIN 2006). Der kalkarme Blankensee (Sondertyp 88.3) ist schwach gepuffert (Juni 2013: 18,2 mg l⁻¹). Im November 2009 wurde der See restauriert (Nährstoffbindung mit dem Fällmittel Bentophos®; Daten und Informationen dazu beim LLUR) und weist seitdem eine deutlich geringere Trophie auf (e1), mit flächendeckender Dominanz submerser Makrophyten, vor allem *Elodea* (mündl. Mitteilung U. Hamann LLUR). Aus den letzten Jahren liegen zahlreiche Daten vom LLUR, dem Umweltamt Lübeck und vom Labor Dr. Nowak vor. Der Blankensee wurde zur Ermittlung des Phyto-Seen-Indexes als Seetyp 11.2 eingestuft. Der See war 2013 eutroph 2.

5.5.1 Ergebnisse Phytoplankton

Zwischen April und Oktober 2013 wurden 7 Proben aus 1 m Tiefe entnommen. Der See wies im Mittel leicht erhöhte Chlorophyll a- Gehalte und Biovolumina auf, wobei wie auch 2011 und 2012 die Biovolumina relativ zum Chl.a gering sind (Anteil des Chl.a am Biovolumen im Mittel = 1,1 %). Die Werte im Jahresverlauf schwankten zwischen 0,6 mm³ l⁻¹ (8,3 μg l⁻¹ Chl a) und 7,3 mm³ l⁻¹ (53 μg l⁻¹ Chl a). Es dominieren unterschiedliche Algengruppen, besonders Cryptophyceen (Schlundalgen), Chlorophyceen (Grünalgen) im April und Juni und Cyanobakterien (Blaualgen) im Juni bis September (Abb. 6). Im Rahmen der EU-WRRL wurde der See mittels der Qualitätskomponente (QK) Phytoplankton mit **gut** bewertet (PSI ohne DI-PROF; genaueres zum PSI siehe Kap. 5.3).

-43-

Im April wurde ein Frühjahrspeak mit Dominanz vor allem von Bacillariophyceen (Kieselalgen) (*Asterionella formosa*) und Chlorophyceen (unbestimmte Chlorococcales) gefunden. Nach dem Einbruch der Frühjahrsblüte im Mai mit Dominanz der Cryptophyceen nahm die Biomasse im Juni wieder leicht zu, mit starker Dominanz der coccalen koloniebildenden Artengruppe *Eutetramorus/Sphaerocystis* aus der Gruppe der Chlorophycen (51 % Anteil an der Gesamtbiomasse).

Ab Juli gab es einen erneuten Dominanzwechsel, mit nun starkem Hervortreten der Cyanobakterien. Es dominierten im Juli vor allem die Picoplankter A*phanocapsa*, *Aphanotece* und *Cyanodictyon* (zusammen 62 % Anteil an der Gesamtbiomasse) und im August und September *Anabaena lemmermannii* (66 und 56 % Anteil).

Ceratium hirundinella aus der Gruppe der Dinophyceen, die von Juni bis September 18-27 % Anteil an der Gesamtbiomasse aufwies, trat erstmalig seit 2010 wieder gehäuft auf.

Profundaldiatomeen wurden im Blankensee nicht analysiert.

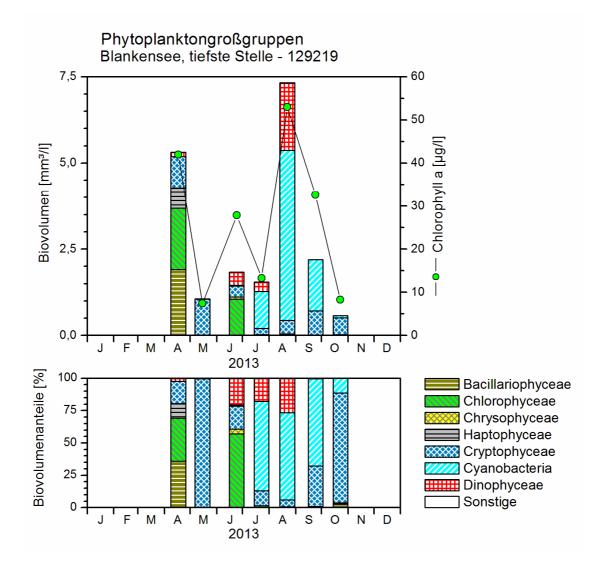


Abb. 6: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Blankensees 2013. <u>Oben</u>: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

5.5.2 Ergebnisse Zooplankton

Der Blankensee nimmt innerhalb der untersuchten Seen (neben bzw. zusammen mit dem Pinnsee) durch seine Artenarmut eine Sonderstellung ein. Auffällig ist allerdings – wie schon im Vorjahr - das Hervortreten einiger Taxa, die in den übrigen untersuchten Seen selten bzw. nicht vorkommen. Zu nennen ist hier insbesondere die vergleichsweise hohe Zahl an Litoral-Taxa bei den Blattfußkrebsen / Cladoceren (siehe unten). Artenarm vertreten sind die Rotatorien und Copepoden. Insgesamt wurden im Blankensee 31 Metazooplankton-Taxa (18 Rotatorien, 8 Cladoceren und 5 Copepoden) erfasst. Larven von Büschelmücken konnten im aktuellen Untersuchungsjahr nachgewiesen werden; Raubcladoceren waren nicht in den Proben vorhanden. An Protozoen wurde nur 1 Taxon (*Arcella* sp.) in geringer Abundanz differenziert bzw. nachgewiesen.

Beim Rotatorienplankton ist das Auftreten des generell seltenen Rädertiers *Hexarthra mira* im Sommer zu nennen. Praktisch den gesamten Untersuchungszeitraum dominieren Aller-

Juli 2014 Plankton schleswig-holsteinischer Seen 2013

weltsarten, wie Keratella cochlearis und Keratella quadrata. "Flossenrädertiere" (Polyarthra spp.) und Filinia terminalis sind im Frühjahr häufig. Typische Eutrophierungszeiger, wie Pompholyx sulcata, sind im aktuellen Untersuchungsjahr nicht vertreten. Zu nennen ist noch die starke Präsenz von koloniebildenden Rädertieren (Conochilus unicornis) im Juli (> 80% der Rotatorienzönose) sowie das Auftreten von Litoralarten (Lecane sp., Trichotria pocillum) im September. Im Gegensatz zu den niedrigen Taxazahlen sind die durchschnittlichen Rotatorien-Abundanzen hoch und liegen bei 1361 Ind. L⁻¹. Das Abundanz-Maximum beträgt 4060 Ind. L⁻¹ (April). Damit liegt der Blankensee hinsichtlich der Rotatorienabundanz deutlich im hoch eutrophen bzw. polytrophen Bereich und – zusammen mit dem Bothkamper See - an der Spitze der untersuchten Seen, wobei hervorzuheben ist, dass im Blankensee die Rotatorien bisher immer stark vertreten waren (siehe auch Biomasse und Diskussion).

Das Cladocerenplankton ist – trotz zahlreicher Arten - einfach, aber abweichend zum Vorjahr zusammengesetzt. Auffällig ist die starke Präsenz der Daphnien in den Monaten Mai bis Oktober (100 % bzw. annähernd 100 % der Cladocerenzönose in diesen Monaten). Interessant und erwähnenswert ist, dass neben Daphnia galeata Morphen, die den gesamten Untersuchungszeitraum stark vertreten sind, gegen Ende des Untersuchungszeitraums D. longispina Morphen auftreten. Kleine Cladoceren (die Rüsselkrebse Bosmina longirostris und Linsenkrebschen Chydorus sphaericus) waren nur im April vertreten. An Litoralcladoceren waren die Bodenbewohner Alona affinis, Alona guttata und Alona rectangula in den Proben vorhanden. Makrophytenzeiger, wie Sida crystallina oder Simocephalus vetulus waren nicht präsent. Die mittlere Abundanz der Cladoceren von 34,1 Ind. L⁻¹ sowie das Maximum von 62 Ind. L⁻¹ gruppiert den Blankensee deutlich in den eutrophen Bereich.

Bei den Copepoden fallen - mit Eudiaptomus cf. vulgaris und Cyclops strenuus - Arten auf, die für kleine Gewässer typisch sind. Auffällig waren auch die hohen Dichten des calanoiden Copepoden im Hochsommer (Juli), wobei allerdings in den Proben kaum adulte Tiere nachzuweisen waren. Das Copepodenplankton in der warmen Jahreszeit wird von Mesocyclops leuckarti dominiert. An Litoralarten war Eucyclops serrulatus vorhanden. Die durchschnittliche Abundanz der Copepoden liegt bei 11,6 (Calanoida) bzw. 67,9 Ind. L⁻¹ (Cyclopoida), die maximale Abundanz bei 37 bzw. 168 Ind. L⁻¹ und gruppiert den See ebenfalls deutlich in den eutrophen Bereich.

Die **Protozoen** sind im Blankensee See wie bereits gesagt schwach vertreten (maximal ca. 2 Ind. L⁻¹).

Die mittlere **Biomasse** des Zooplanktons liegt im Blankensee mit 408,4 µg L⁻¹ deutlich im eutrophen Bereich (TGL (1982); maximal werden 852 µg L⁻¹ erreicht (Abb. 7). Hervorstechend im aktuellen Untersuchungsjahr ist die hohe Biomasse der Rotatorien im April mit ca. 55 % Anteilen an der Metazooplankton Masse. Im Mittel liegt der Anteil der Rädertiermasse an der Gesamtbiomasse im aktuellen Untersuchungsjahr aber nur bei 12 %.

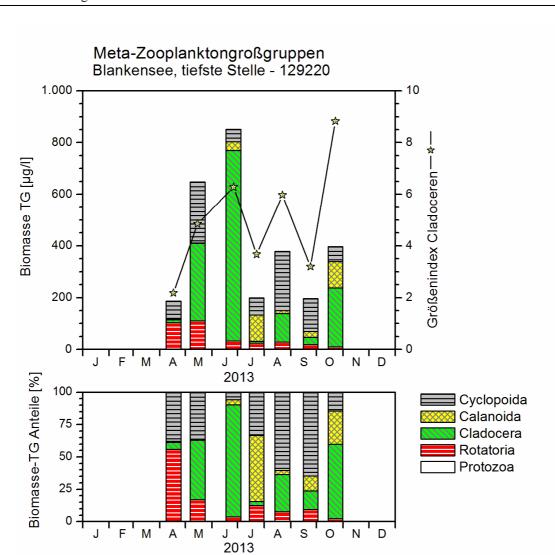


Abb. 7: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Blankensee 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

Nahrungsnetz

Der Blankensee liegt hinsichtlich des Z/P-total (mit durchschnittlich 66 % d⁻¹) im oberen Bereich der untersuchten Seen; der Durchschnittswert wird allerdings stark von dem günstigen Umsatz von Phytoplankton- in Zooplanktonmasse im Mai, Juni und Oktober (> 100 % d⁻¹) geprägt. Im Sommer erfolgt ein Rückgang des Z/P auf < 30 (Juli) bzw. < 20 % d⁻¹ (August, September). Der sommerliche Rückgang des Z/P ist gekoppelt mit dem starken aufkommen der schlecht fressbaren Cyanobakterien. Im Oktober nimmt die Masse der Cyanobakterien (bei gleichzeitigem Anstieg der gut fressbaren Schlundalgen) wieder ab, was in einem Anstieg des Z/P auf > 100 % d⁻¹ und damit in einem günstigen Umsatz von Phytoplankton- in Zooplankton-Masse bzw. einer guten Verwertung des Phytoplanktons durch das Zooplankton resultiert. Ein deutlicher Fraßdruck auf das Phytoplankton seitens des Zooplanktons ist folglich in den Monaten Mai, Juni und Oktober festzustellen.

Juli 2014

Der Cladoceren-Größenindex (GIC) beträgt im Mittel 5,0 µg Ind.-1, im Oktober steigt der GIC sogar auf 8,8 µg Ind.⁻¹ an (Abb. 7).

5.5.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Der sehr flache makrophytendominierte Blankensee ist als kalkarmer See ein Sondertyp (88.3). Der eutrophe See hat auch im vierten Jahr nach der Ende 2009 durchgeführten Restaurierung eine gegenüber der Zeit vor 2010 relativ geringe Trophie, die sich inzwischen im eutrophen Bereich eingependelt hat (Tab. 11).

Der Blankensee wurde planktologisch 2006 und 2010 bis 2013 vom gleichen Bearbeiter untersucht (ARP & DENEKE 2007, KASTEN & MAIER 2011, ARP & MAIER 2012, ARP, MAIER & MICHELS 2013).

Der Blankensee wies 2013 wieder leicht erhöhte Planktongehalte gegenüber 2012 auf, im Sommer mit Zunahme der Blaualgen und Abnahme der Cryptophyceen, zudem auf das ganze Jahr bezogen mit einer Abnahme der Chrysophyceen gegenüber 2010-2012 (Abb. 8). Die Blaualgendominanz ist zu relativieren, da die Gehalte meist nicht sehr hoch waren und solche Arten vorhanden waren, die eher eine geringe Trophie anzeigen. Diese Phänomene können u.a. wetterbedingt sein, insbesondere in sehr flachen Seen wie dem Blankensee. Der Phosphortgehalt hat sich im Jahresmittel in den letzten 3 Jahren nicht verändert, die Amplituden sind jedoch größer geworden, mit einem hohen Aprilwert 2013 von 0,088 μg/l TP.

Eine Zusammenschau der dominanten Arten des Phytoplanktons der letzten Jahre findet sich bei ARP, MAIER & MICHELS (2013).

Um den Blankensee anhand der QK Phytoplankton bewerten zu können, wurde er wie in den Vorjahren dem Planktonsubtyp 11.2 (< 3 m mittlere Tiefe) zugeordnet. Die ökologische Einstufung des Sees ist mit 2,1 eine halbe Klasse höher als 2012, aber immer noch gut. Insgesamt ist der PTSI (Phytoplankton-Taxon-Seen-Index), ein Teilmetric des Bewertungsverfahrens anhand der Artenzusammensetzung, in jedem Jahr von 2006 über 2010, 2011, 2012 bis 2013 zurückgegangen. Die Bewertung ist insgesamt plausibel.

Tab. 11: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Blankensee.- Erläuterungen: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

Blankensee (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (Riedmüller et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2006	1,0	0,272	164,5	19,0	4,4	4,6
2010	1,7	0,035	15,3	2,1	2,7	1,6
2011	1,7	0,048	21,5	2,2	3,0	2,0
2012	1,7	0,047	18,4	1,4	3,0	1,6
2013	1,6	0,044	26,3	2,8	3,2	2,1

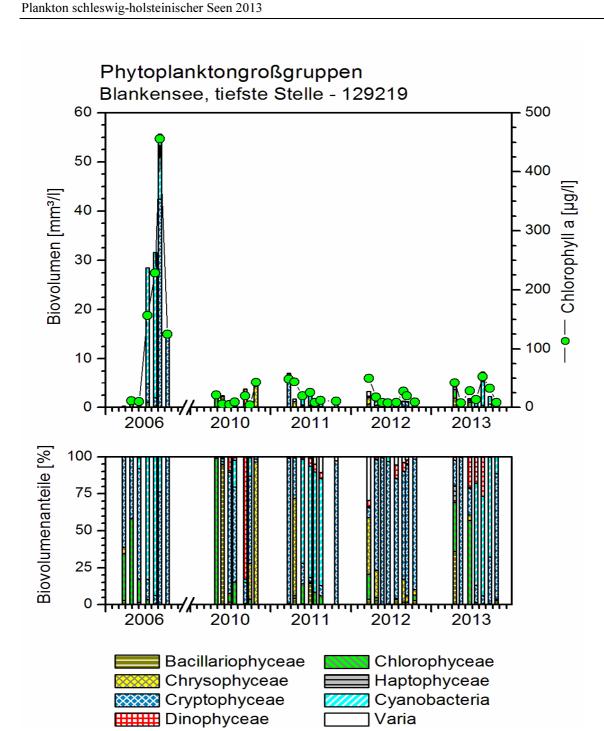


Abb. 8: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Blankensees 2006 und 2010-2013. <u>Oben</u>: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

Zooplankton

Der Blankensee wurde bereits im Jahr 2010 bis 2012 (ARP, KASTEN & MAIER 2011; ARP & MAIER 2012; ARP, MAIER & MICHELS 2013) sowie im Jahr 2006 (ARP & DENEKE 2007) untersucht. In den Untersuchungsjahren 2006 bis 2012 (sowohl vor als auch nach der Bentophos®-Behandlung) fällt der hohe Anteil der Rädertiere an der Zooplankton Biomasse auf. Im aktuellen Untersuchungsjahr ist der Massen-Anteil der Rädertiere mit nur 12 % aber deutlich niedriger. Positiv zu werten im aktuellen Untersuchungsjahr ist die starke Präsenz der Daphnien insbesondere im Juni, was sich auch deutlich im GIC widerspiegelt. Während für das Jahr 2012 ein mittlerer GIC von nur 1,8 µg Ind. -1 ermittelt wurde, liegt der Wert im Jahr 2013 bei immerhin 5,0 µg Ind. 1 und entspricht damit knapp der Masse einer 1 mm langen Daphnie. Sicherlich trägt die Präsenz der großen, effektiven Filtrierer zu den niedrigen Rädertieranteilen im aktuellen Jahr bei (Konkurenzausschluß). Wiederum auffällig sind auch im aktuellen Untersuchungsjahr die niedrigen Taxazahlen (nur 31 Metazooplankton Taxa). Zu erwähnen ist die Abnahme der mittleren Metazooplankton-Masse von 2006 (vor Bentophos®-Behandlung) zum Jahr 2010 (nach Bentophos®-Behandlung) hin und die sukzessive Zunahme der Biomasse des Zooplanktons von 2010 zum aktuellen Jahr hin. Im aktuellen Jahr liegt der See (mit durchschnittlich 408 µg L⁻¹) wieder deutlich im eutrophen Bereich. Im Juni (bedingt durch die starke Präsenz der Daphnien) steigt die Biomasse des Zooplanktons sogar auf $> 800 \mu g L^{-1}$ an.

-49-

Der saisonale Verlauf des Zooplanktons folgt grob dem PEG Modell für eutrophe Seen. Nach einem Zooplankton- (bzw. Daphnien-Peak) im Juni erfolgt ein Rückgang des Zooplanktons im Juli ("Klarwasserstadium"). Der Herbst-Peak ist allenfalls "angedeutet", wobei aber eine Zunahme der großen Filtrierer (Daphnien) gegen Ende des Untersuchungszeitraumes durchaus zu beobachten ist.

Der angestiegene **GIC** sowie die Präsenz von großen Büschelmücken-Larven im Juni deuten auf einen Rückgang des Fisch-Prädationsdruckes hin. Das Auftreten von Ufer-Arten weist auf den Einfluss des Litorals hin. Typische Makrophyten-Zeiger waren im aktuellen Untersuchungsjahr aber nicht in den Proben vorhanden. Interessant bei den Crustaceen ist die Verschiebung von *Daphnia galeata* Morphen im Frühjahr hin zu *Daphnia longispina* Morphen im Herbst.

Deutlich ist die schlechte Verwertbarkeit des Phyto- durch das Zooplankton vor der Restaurierung. Die Werte für den Quotienten sind 2006 vielfach geringer als nach 2009 (Tab. 12).

Der Umsatz von Phytoplanktonmasse in Zooplanktonmasse (**Z/P** %/d) ist im Sommer 2013 im Vergleich zu den Vorjahren (vermutlich aufgrund der niedrigen Präsenz der gut fressbaren Cryptophyceen; siehe oben) ungünstiger (Tab. 12). Trotzdem hinterlässt der Blankensee hinsichtlich des Zooplankton-Spektrums im aktuellen Untersuchungsjahr 2013 einen besseren Eindruck als z. B. im Vorjahr.

Tab. 12: Vergleich wichtiger Parameter (Jahresmittel) des Zooplanktons im Vergleich 2013 mit früheren Jahren für den **Blankensee**.- <u>Erläuterungen</u>: GIC = Größenindex Cladoceren. Z/P = Zoopl.- zu Phytoplanktonbiomasse auf Trockengewichts-Basis.

Blankensee	2006	2010	2011	2012	2013
BIOMASSE (µg L-1)	410	182	253	300	408
% Rotatorien	50	29	51	48	12
% Cladoceren	25	11	24	14	50
% Calanoide	4	20	1	1	10
% Cyclopoide	21	40	25	38	29
GIC (µg Ind1)	2,6	3,0	4,3	1,8	5,0
Z/P Veg.P (% / d)	11,4	65	46	62	66
Z/P Sommer (% / d)	7.1	104	54	79	20

The state of the s

Stammda	aten, limnochen	nische und –biolo	ogische Mittelwert	e 2013 + Indices	(tiefste Stelle)
Seetyp (Plkt.)	VQ [km ² 10 ⁶ m ⁻³]	See-Fläche [km²]	Tiefe – mittel [m]	Tiefe – max [m]	th. Verweilzeit [a]
11 (11.2)	33,0	1,36	1,2	2,5	0,1
TP _{lm} [mg/l]	TN _{1m} [mg/l]	SiO ₂ -Si _{lm} [mg/l]	Sichttiefe [m]	Chl a [µg/l] 1 m	BV [mm³/l] 1 m
0,320	3,46	1,33	0,3	191,2	23,4
ZooplTG (mg/l)	Z/P (TG/TG) (% / d) Juli-Aug.	Trophie-Index (RIEDMÜLLER et al 2013) für 2006	Trophie-Index (RIEDMÜLLER et al 2013) für 2013	PSI ohne DiProf (PhyoSee 5.1) 2006	PSI ohne DiProf (PhyoSee 5.1) 2013
2,1	7	4,5 – h	4,9 – h	4,7 - schlecht	5,0 - schlecht
7	Tiefenkarte (lin	ks unten) und ob	erirdisches Einzug	gsgebiet (rechts u	inten)
Bothkamp	or 500	5 10 30 Shor	Briggs Briggs Roberts Signature Signatur	Horbschrift Anderschrift And	CroBbarian Element State

-51-

Der im Kreis Plön westlich Kirchbarkau (südlich Kiel) liegende, in Nord-Süd-Richtung langgestreckte Bothkamper See befindet sich am Anfang des Eider-Einzugsgebietes. Die Hauptzuflüsse sind die Drögen-Eider (am bedeutensten), der Schönhorster Graben und die Dosenbek, wobei die Drögen-Eider an der Südspitze des Sees mündet und sehr nahe davon den See wieder Richtung Süden als Eider verlässt. Das Einzugsgebiet ist relativ zum Seevolumen sehr groß. Die Eider ist der Hauptabfluß. Der sehr flache See liegt in einer flachen Grundmoräne des östlichen Hügellandes (LANU 1982).

Der Großteil der deutlich erhöhten Phosphoreinträge erfolgt diffus aus dem Einzugsgebiet (Stand 2012, www.umweltdaten.landsh.de/nuis/wafis/seen/seenalle.php). Der Bothkamper

See war 2013 hypertroph. Es wurden 2013 zwei Probestellen untersucht, die tiefste Stelle im Nordbecken und eine Stelle bei Bissee nahe des Austritts der Eider.

5.6.1 Ergebnisse Phytoplankton

Zwischen April und Oktober 2013 wurden 7 Proben an der tiefsten Stelle bzw. 5 Proben bei Bissee (Juni und Juli fehlen) entnommen, an beiden Stellen aus jeweils 0 – 1 bis 0 - 2 m Tiefe. Der See wies von Frühsommer bis zum Frühherbst bei sehr hohen Phosphorgehalten sehr hohe Planktongehalte auf, mit einem Biovolumen im Mittel an der tiefsten Stelle von 23,4 mm³ l⁻¹ (191 μg l⁻¹ Chl a) und bei Bissee von 25,9 mm³ l⁻¹ (212 μg l⁻¹ Chl a). Es dominierten nahezu ausschließlich Bacillariophyceen (Kieselalgen) und Cyanobakterien (Blaualgen) (Abb. 9). Beide Probestellen wiesen meist ein sehr ähnliches Plankton auf. Im Rahmen der EU-WRRL wurde der Bothkamper See an der tiefsten Stelle mittels der Qualitätskomponente (QK) Phytoplankton mit **schlecht** bewertet (PSI ohne DI-PROF; genaueres zum PSI siehe Kap. 5.3).

Ende April war der einzige der fünf vergleichenden Termine beider Probestellen, wo kleinere Unterschiede im Planktonbild zu erkennen waren. Während an der tiefsten Stelle bei den Kieselalgen *Aulacoseira granulata* und vor allem *Aul. ambigua* (zusammen 29% Anteil an der Gesambiomasse), *Fragilaria acus* (10 % Anteil) und *Cyclostephanos dubius* (8 %) gehäuft auftraten, waren bei Bissee neben *Aulacoseira* vor allem bentische Formen, in erster Linie *Surirella* (25 % Anteil) zu finden.

Ab Mai verliefen die Entwicklungen an beiden Probestellen bei den 4 gemeinsamen Terminen sehr ähnlich. Im Mai nach dem Zusammenbruch der Frühjahrsblüte dominierten bei sehr geringer Biomasse nahezu ausschließlich coccale Chlorophyceen, meist *Pediastrum* mit 3 Arten, *Scenedesmus* und *Coelastrum astroideum*.

Ab Juni nahm die Biomasse kontinuierlich zu. Es dominierten im genannten Monat wieder Kieselalgen mit der Gattung *Aulacoseira* (62 % Anteil). 1 Monat später war das Bild ein völlig anderes. Nun waren nostocale Cyanobakterien deutlich vorherrschend (*Anabaena flosaquae* mit 80 % Anteil). Einen weiteren Monat später im August wurde an der tiefsten Stelle bei den Blaualgen *Anabaena* durch die 2 Arten *Microcystis aeruginosa* (36 % Anteil) und *Planktothrix agardhii* (15 % Anteil) ersetzt. Ebenso war dort im August *Aulacoseira* (31 % Anteil) weiterhin stark vertreten. Bei Bissee war die Zusammensetzung ähnlich, außer daß statt *Planktothrix agardhii* v.a. die Nostocales *Aphanizomenon gracile* und *A. flos-aquae* (zusammen 18 % Anteil) auftraten.

Im September und Oktober waren die gleichen Arten des Hochsommers stark vertreten, v.a. *Microcystis aeruginosa* und *Aulacoseira*.

Die gesondert entnommene Probe der Profundaldiatomeen vom 17.9. 2013 spiegelt bei den dominanten Arten deutlich das Freiwasser wieder. Es traten die 2 Arten *Aulacoseira granulata* (39 % Anteil an der Gesamtschalenzahl) und *Aulacoseira ambigua* (34 % Anteil) stark hervor. Weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF findet sich in Kap. 5.2.

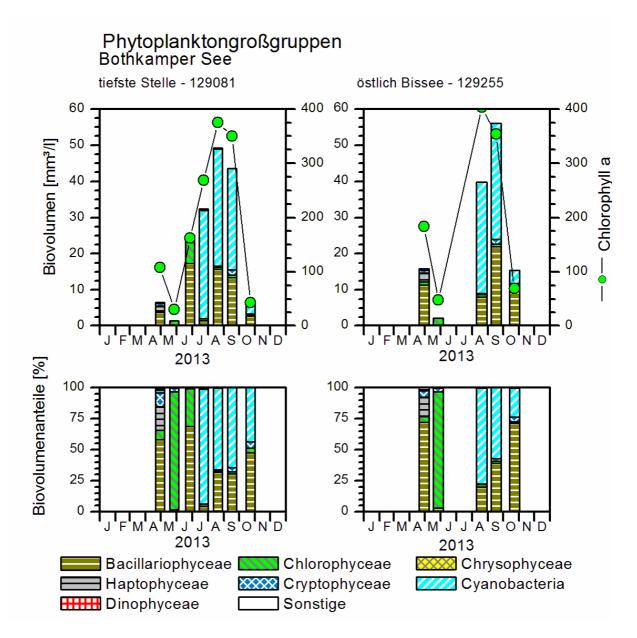


Abb. 9: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Bothkamper Sees 2013, **links** an der tiefsten Stelle in der Nordbucht, **rechts** nahe der Südspitze bei Bissee. <u>Oben</u>: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

5.6.2 Ergebnisse Zooplankton

Im Bothkamper See (tiefste Stelle) wurden insgesamt 35 Taxa des Metazooplanktons registriert (19 Rotatorien, 8 Cladoceren, 8 Copepoden); damit gehört der See zu den Seen mit vergleichweise geringer "Taxa-Abundanz". Larven von Büschelmücken konnten nicht nachgewiesen werden, wohl aber Raubcladoceren (der Glaskrebs *Leptodora kindtii*). An Protozoen wurden 4 Taxa differenziert. Nennenswerte Abundanzen wurden aber nur vom Urnentierchen (*Tintinnopsis* sp.) erreicht (siehe unten).

Die dominierenden Taxa bei den **Rotatorien** im zeitigen Frühjahr sind Allerweltsarten, wie Keratella quadrata (April) und Keratella cochlearis (Juni). Keratella cochlearis tecta be-

stimmt im Juli und September das Bild. Auffällig ist die starke Präsenz an Eutrophierungszeigern, mit *Brachionus calyciflorus*, *Brachionus diversicornis* und *Pompholyx sulcata*. Beispielsweise erreicht *Brachionus calyciflorus* mit > 1000 Ind. L⁻¹ im August immerhin ca. 25 % der Rotatorienzönose. Nahrungsspezialisten sind schwach vertreten; allenfalls ist hier *Trichocerca pusilla* (ebenfalls ein Eutrophierungszeiger) zu nennen. Mit hohen, deutlich den hoch eutrophen bis polytrophen Bereich indizierenden Individuendichten (durchschnittlich 1933,5 Ind. L.⁻¹, maximal 3853 Ind. L⁻¹) sind die Rädertiere wichtige Komponenten des Zooplanktons des Bothkamper Sees.

Die Cladocerenfauna wird zu Beginn des Untersuchungszeitraumes durch kleine Arten (den Rüsselkrebs *Bosmina longirostris* sowie das Linsenkrebschen *Chydorus sphaericus*) dominiert (zusammen ca. 97 % der Cladocerenzönose). Im Juni kommen Daphnien (*Daphnia cucullata* und der Hybrid *Daphnia x krausi*), - bei gleichzeitig deutlicher Präsenz der Linsenkrebschen – stärker auf. Gegen Ende des Untersuchungszeitraumes dominieren wieder Rüsselkrebse (*Bosmina longirostris*) und Linsenkrebse (*Chydorus sphaericus*). Raubcladoceren (der Glaskrebs *Leptodora kindtii*) waren im Juni, Juli, September und Oktober präsent. Das Cladocerenplankton ist im Vergleich zu anderen Seen extrem individuenreich. Die mittlere Abundanz der Cladoceren beträgt im Bothkamper See 816,7 Ind. L⁻¹; das Maximum liegt bei "fast irrealen" 3730 Ind. L⁻¹.

Im Frühjahr (April) dominieren die großen Cyclopoida mit *Cyclops vicinus* und *Cyclops kolensis* das **Copepodenplankton** (ca. 90 % der Copepodenzönose). Bereits im Mai kommt *Acanthocyclops robustus* (Eutrophierungszeiger) stark auf und ist in den Folgemonaten (bis zum Ende des Untersuchungszeitraumes) fast die einzige Copepodenart im Pelagial des Bothkamper Sees. Calanoide Copepoden sind mit *Eudiaptomus graciloides* zwar vertreten, spielen aber mengenmäßig keine Rolle. Die mittlere Abundanz der Copepoden liegt bei 18,8 (Calanoida) bzw. 153,5 Ind. L⁻¹ (Cyclopoida) und die maximale Abundanz bei 80 bzw. 373 Ind. L⁻¹, was den Seen auch anhand der Copepodenabundanz in den extrem nährstoffreichen Bereich rückt.

Die **Protozoen** sind im Bothkamper See im Frühjahr durch das Urnentierchen (*Tintinnopsis* sp.) mit maximal 80 Ind. L⁻¹ vertreten.

Die mittlere **Biomasse** des Zooplanktons liegt im Bothkamper See bei ca. 2125 $\mu g \ L^{-1}$ (also im komfortablen Milligramm Bereich) und damit nach TGL (1982) hoch im polytrophen Bereich. Maximal werden > 5000 $\mu g \ L^{-1}$ erreicht (Abb. 10). Starke Massenbildner sind im zeitigen Frühjahr die cyclopoiden Copepoden, im Mai und Juni und wieder im September, Oktober die Cladoceren. Die Rotatorien erreichen im August > 40 % der Gesamtbiomasse, im Mittel nur 8 %.

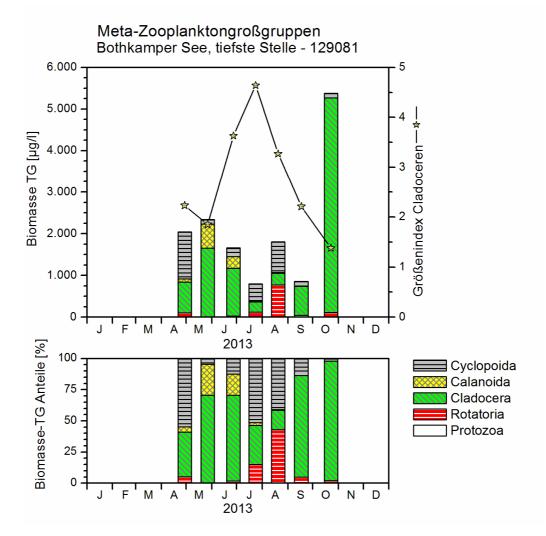


Abb. 10: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Bothkamper See, tiefste Stelle, 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

Nahrungsnetz

Das Z/P Verhältnis beträgt im Bothkamper See im Durchschnitt zwar 96 % d⁻¹, der Mittelwert wird aber von extrem hohen Werten im Frühjahr und Herbst (bis zu 368 % d⁻¹) geprägt. Vermutlich fiel die Probenahme Ende Mai mit dem Klarwasserstadium zusammen, wo viel Zooplankton einer geringen Menge an Phytoplankton gegenüber steht. Im Sommer (Juli bis September) liegt das Z/P Verhältnis unterhalb von 10 % d⁻¹ was für eine sehr schlechte Verwertung des Phytoplanktons durch das Zooplankton spricht. Der ungünstige Umsatz von Phytoplankton- in Zooplanktonmasse im Sommer ist sicherlich auf die extrem hohen Massenanteile der schlecht fressbaren Cycanobakterien zurückzuführen, deren Masse in den genannten Monaten auf bis knapp 50 mm³ L⁻¹ ansteigt. Zwischen Phytoplanktonmasse und Zooplanktonmasse ist keinerlei Gleichgang festzustellen; beide Parameter verlaufen völlig entkoppelt.

Der Cladoceren-Größenindex (GIC) liegt im Mittel bei 2,75 μg Ind. ⁻¹ und erreicht einen Maximalwert von 4,6 μg Ind. ⁻¹ (Juli). Er ist in etwa halb so groß wie im Blankensee und somit relativ klein (Abb. 10).

Für den **Bothkamper See (östl. Bissee)** stand nur eine Zooplanktonprobe vom September zur Verfügung. Die Daten sind folglich nur mit dem September-Wert von der tiefsten Stelle vergleichbar und sollen hier nur kurz besprochen werden. Hinsichtlich der Artenzahl gab es praktisch keine Unterschiede zwischen den beiden Probenahme Stellen. An der tiefsten Stelle wurden in der zur Verfügung stehenden Septemberprobe insgesamt 18 Taxa, an der Stelle östl. Bissee 17 Taxa nachgewiesen. Deutliche Unterschiede gab es allerdings bei den Abundanzen und den Biomassen des Zooplanktons, wobei die Stelle Bissee grob um den Faktor 2 höher war als die tiefste Stelle. Die Biomasse des Zooplanktons lag im September an der tiefsten Stelle bei 853 μg L⁻¹, an der Stelle östlich Bissee bei 1775 μg L⁻¹.

5.6.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Der sehr flache Bothkamper See weist hohe Phytoplanktongehalte auf, insbesondere hohe Blaualgendichten im Sommer und Frühherbst.

Aufgrund der hohen Phosphoreinträge aus dem großen Einzugsgebiet kann das Phytoplankton in diesem sehr flachen See bei genügend Licht im Wasserkörper während des 1. Halbjahres viel Biomasse produzieren, das phasenweise, vor allem im Mai, vom Zooplankton stark dezimiert wird (siehe unten). Im 2. Halbjahr ändert sich das Bild. Der Phosphor nimmt trotz hoher Werte im ersten Halbjahr nochmal deutlich zu, bedingt vermutlich durch verstärkte Phosphorrücklösung. Die Phytoplanktonbiomassen nehmen ebenfalls stark zu, nun aber anders als im grün- und kieselalgengeprägten Frühjahr durch Cyanobakterien, die zudem schlechter durch das Zooplankton verwertbar sind (siehe unten).

Der See wurde 2013 an beiden Probestellen, die ein sehr ähnliches Plankton aufwiesen, anhand der QK Phytoplankton mit **schlecht** bewertet. Dieser Wert ist insbesondere aufgrund der sehr hohen Biomassenwerte im Hochsommer und Frühherbst plausibel.

Das Phytoplankton wurde zuletzt 2006 von März bis Oktober (7x) analysiert, vom gleichen Bearbeiter wie 2013 (ARP & DENEKE 2007). Die hohen Gehalte 2006 im Sommer waren ähnlich wie 2013, mit ähnlicher Dominanz der Nostocales und *Microcystis aeuginosa*, beide aus der Gruppe der Cyanobakterien. Im Jahr 2006 waren die Kieselalgen deutlich weniger stark, dafür die Blaualgenspitzen im Sommer höher (Abb. 11). Insgesamt sind die mittleren Planktongehalte und der PSI in beiden Jahren ähnlich (Tab. 13) und Unterschiede im Jahresverlauf vermutlich eher wetterbedingt.

Tab. 13: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den **Bothkamper See, tiefste Stelle.**- Erläuterungen: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

Bothkamper See, tiefste Stelle (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2006	0,6	0,267	188	27,2	4,5	4,7
2013	0,3	0,320	191	23,4	4,9	5,0

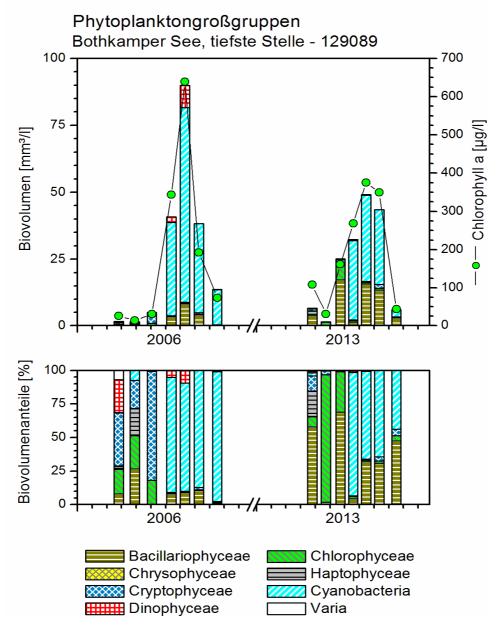


Abb. 11: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Bothkamper See, tiefste Stelle, 2006 und 2013. <u>Oben</u>: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

Zooplankton

Der Bothkamper See weist hinsichtlich des Zooplanktons typische Charakteristika eines polytrophen Flachsees auf. Die Biomassen sind mit durchschnittlich > 2 mg L⁻¹ im absolut höchsten Bereich und damit noch deutlich (ca. 3 fach) höher als die von ARP & DENEKE im Jahr 2006 ermittelten Zooplankton-Massen. Nochmals erwähnenswert sind die extrem, fast "irreal" hohen Abundanzen der kleinen Cladoceren. Vermutlich wurde bei der Probenahme ein Patch erwischt. Das Artenspektrum wird geprägt durch zahlreiche Eutrophierungzeiger innerhalb aller Zooplankton Großgruppen. Die Anzahl der nachgewiesenen Taxa ist höher als im Jahr 2001 (SPETH 2001), aber etwas niedriger als im Jahr 2006 (ARP & DENEKE 2006).

-58-

Entsprechend der Dominanz der kleinen Cladoceren liegt der **GIC** im niedrigen Bereich, was gut mit den Angaben aus dem Jahr 2006 übereinstimmt und – trotz Präsenz von Raubcladoceren – auf einen mindestens moderaten Fraßdruck auf das Zooplankton durch Fische hinweist. Hinsichtlich der saisonalen Abläufe ist keine Übereinstimmung mit dem PEG Modell für eutrophe Seen zu erkennen.

Der geringe Umsatz von Phytoplanktonmasse in Zooplanktonmasse (**Z/P** %/d) während des Hochsommers (u.a. auch dokumentiert durch den deutlichen Unterschied zwischen Mittelwert du Median; vgl. Tab. 9) spricht für eine sehr ungünstige Nahrungszusammensetzung für das Zooplankton (schlecht fressbare Cyanobakterien; siehe oben). Anders ist es im ersten Halbjahr, wo der Fraßdruck anhand des Z/P, besonders im Mai, sichtbar wird. Der Unterschied von Z/P Veg und Z/P Sommer ist von allen untersuchten Gewässern 2013 im Bothkamper See am stärksten (96 zu 7 % d⁻¹).

5.7 Bültsee

St	Stammdaten, limnochemische und -biologische Mittelwerte 2013 + Indices								
Seetyp (Plkt.)	VQ [km² 10 ⁶ m⁻³]	See-Fläche [km²]	Tiefe – mittel [m]	Tiefe – max [m]	th. Verweilzeit [a]				
88.3 (11.2)	3,2	0,20	3,0	13,4	1,0				
TP _{lm} [mg/l]	TN _{1m} [mg/l]	SiO ₂ -Si _{lm} [mg/l]	Sichttiefe [m]	Chl a [µg/l] Z _{integr.}	BV[mm³/l] Z _{integr.}				
0,025	0,70	0,12	2,1	10,4	0,9				
ZooplTG (mg/l)	Z/P (TG/TG) (% / d(Juli- Aug).	Trophie-Index (RIEDMÜLLER et al 2013) für 2006	Trophie-Index (RIEDMÜLLER et al 2013) für 2013	PSI ohne DiProf (PhyoSee 5.1) 2006	PSI ohne DiProf (PhyoSee 5.1) 2013				
0,13	31	1,9 - m1	2,5 - m2	(0,8) – sehr gut	(0,8) – sehr gut				
Т	Tiefenkarte (lin	ks unten) und ob	erirdisches Einzug	gsgebiet (rechts u	nten)				
50 art 1990	Bültsee	200 m	Marlenholz (1)	203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23.0 Birkensee				

-59-

Der im Kreis Rendsburg-Eckernförde an der B76 liegende relativ kleine Bültsee ist ein eizeitlich entstandener Toteissee (LANU 1998), der auf einem Sander liegt. Der relativ flache See ist kalkarm, mit Werten für Calcium um 15 mg/l (Seetyp 88.3). Der Bültsee weist ein relativ kleines Einzugsgebiet auf und hat daher eine verhätnismäßig geringe Trophie. Im Jahr 2013 war der See im Grenzbereich von meso- zu eutroph. In früheren Jahren war der Status deutlich mesotroph (Daten des LLUR).

Der ursprünglich oligotrophe See, der grundwassergespeist und zu- und abflußlos ist, weist eine reichhaltige Unterwasservegetation auf. Im Jahr 2007 wurden in größeren Beständen u.a. die gefährdeten Arten *Litorella uniflora* und *Myriophyllum alterniflorum* gefunden (STUHR 2007).

5.7.1 Ergebnisse Phytoplankton

Zwischen April und Oktober 2013 wurden 7 Proben aus jeweils 0 - 6 m Tiefe entnommen. Der See weist geringe Planktongehalte auf. Die mittleren Werte lagen bei 10,4 µg l⁻¹ Chl a und 0,9 mm³ l⁻¹ Biovolumen (Tab. 5). Es dominierten ganzjährig die eine geringe Trophie anzeigenden Chrysophyceen (Goldalgen) und zudem Cryptophyceen (Schlundalgen). Cyanobakterien (Blaualgen) traten im Sommer häufiger auf, desweiteren ganzjährig subdo-

minant Chlorophyceen (Grünalgen) und Dinophyceen (Hornalgen) (Abb. 12). Im Rahmen der EU-WRRL wurde der See mittels mittels der Qualitätskomponente (QK) Phytoplankton mit **sehr gut** bewertet (PSI ohne DI-PROF; genaueres zum PSI siehe Kap. 5.2).

Im Frühjahr wurde das größte Biovolumen des Jahres ermittelt. Es dominierten Schlundalgen der Gruppe *Cryptomonas*, meist mit > 30 μm Größe, Haptophyceen mit dem einzigen Vertreter, dem kleinen Flagellaten *Chrysochromulina parva* (31 % Anteil an der Gesamtbiomasse) und *Dinobryon crenulatum* (25 % Anteil) aus der Gruppe der Chrysophyceen.

Nach dem Einbruch der Frühjahrsblüte dominierten im Mai weiterhin große Cryptophyceen. Erst ab Juni änderte sich das Bild mit Vorherrschen von kleinerwüchsigen Schlundalgen der Gruppe *Cryptomonas erosa/ovata/phaseolus* und des Hervortretens des großvolumigen Flagellaten *Ceratium hirundinella* (42 % Anteil) aus der Gruppe der Dinophyceeen.

Von Juli bis September waren die Goldalgen erneut stark vertreten, nahezu ausschließlich mit der Gattung *Uroglena* (30-38 % Anteil an der Gesamtbiomasse). Blaualgen waren in dieser Zeit mit mehr Arten vertreten, vor allem *Woronichina naegiliana, Anabaena flos-aquae* und *Microcystis*, alles Taxa, die bei leicht erhöhter Anzahl in einem breiten Trophiesprektrum vorkommen. Auffällig war in den genannten drei Monaten das relativ starke Hervortreten von *Quadrigula pfitzeri* (0,4 – 2,4 % Anteil) aus der Gruppe der Grünalgen. Diese Art weist auf eine sehr geringe Trophie hin.

Die Bacillariophyceen (Kieselalgen), die bei geringen Silikatwerten im Jahresverlauf kaum auftraten, waren von Juli bis Oktober mit der Art *Fragilaria crotonensis* noch relativ häufig anzutreffen.

Profundaldiatomeen wurden im Bültsee entnommen, konnten jedoch wegen sehr geringer Dichte an Kieselalgenschalen nicht gezählt werden.

5.7.2 Ergebnisse Zooplankton

Im Bültsee wurden 42 Metazooplankton-Taxa (25 Rotatorien, 10 Cladoceren und 7 Copepoden) erfasst. An Protozoen wurden 4 Taxa differenziert, wobei deren Abundanzen im niedrigen Bereich blieben. Obwohl Larven der Büschelmücken (*Chaoborus* sp.), Raubcladoceren oder Dreikantmuscheln nicht nachgewiesen wurden gehört der Bültsee eher zu den artenreicheren Seen. Erwähnenswert ist der Nachweis eines parasitischen Copepoden der Gattung *Ergasilus*.

Das **Rotatorienplankton** wurde den größten Teil des Jahres (Ausnahme allenfalls das zeitige Frühjahr) durch *Keratella cochlearis* dominiert, wobei sowohl die *Keratella cochlearis tecta* als auch die *Keratella cochlearis hispida* Form vorkamen. Weitere wichtige Taxa waren im zeitigen Frühjahr (April, Mai) die "Flossenrädertiere" (*Polyarthra dolichoptera* und *P. vulgaris*) und *Kellicottia longispina* und im Juni *Pompholyx sulcata*. In den Sommermonaten war das Rädertierspektrum artenreich zusammengesetzt, mit Nahrungsspezialisten aus den Gattungen *Trichocerca* und *Gastropus*. Als vergleichsweise seltenere Art ist allenfalls *Ploesoma hudsoni* zu nennen, die von August bis Oktober (in geringer Abundanz) vertreten war. Die

durchschnittliche Rotatorien-Abundanz lag bei 449,6 Ind. L⁻¹, das Abundanz-Maximum bei 1026 Ind. L⁻¹ (Mai). Der Bültsee liegt damit hinsichtlich der Rotatorienabundanz bereits im eutrophen Bereich.

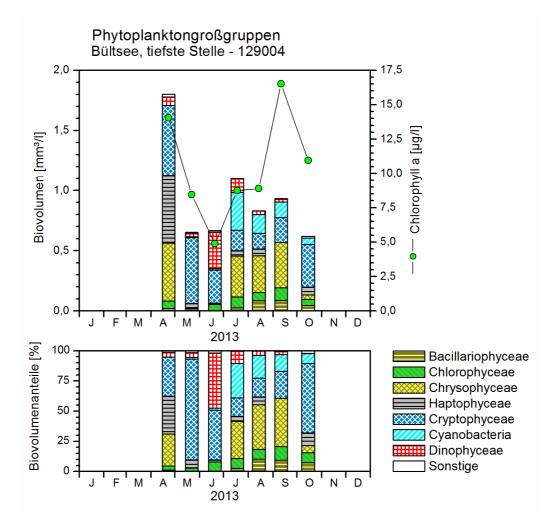


Abb. 12: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Bültsees 2013. <u>Oben</u>: Absolute Biovolumina. Unten: Prozentuale Anteile.

Bei den **Cladoceren** domineren im April und Mai die Rüsselkrebse (*Bosmina longirostris*). Ihre Anteile an der Cladocerenzönose liegen zu dieser Zeit bei annähernd 100 %. Im Juni kommen Daphnien (überwiegend *Daphnia cucullata*) stark auf und bestimmen das Bild. In den Sommermonaten kommen zu den Daphnien Rüsselkrebse (zu dieser Zeit allerdings *Bosmina coregoni coregoni* nicht *Bosmina longirostris*), *Ceriodaphnia* Arten und *Diaphanosoma brachyurum* hinzu. Gegen Ende des Untersuchungszeitraums tritt wiederum (wie im Frühjahr) das Rüsselkrebschen *Bosmina longirostris* stark hervor, wobei die im Sommer häufigen Arten (*Daphnia cucullata*, Ceriodaphnien) noch deutlich präsent bleiben. Die mittlere Abundanz der Cladoceren beträgt im Bültsee 25,1 Ind. L⁻¹, das Maximum liegt bei 74 Ind. L⁻¹. Hinsichtlich der Cladoceren-Abundanz liegt der See ebenfalls im (unteren) eutrophen Bereich.

Im Copepodenplankton des Bültsees ist bereits im April die normalerweise in den Sommermonaten häufige Art *Mesocyclops leuckarti* stark vertreten (45 % der Copepodenzönose).

Noch häufig zu dieser Zeit ist *Cyclops kolensis* (41 % der Copepodenzönose). Von Mai an bis zum Ende des Untersuchungszeitraums bestimmt *Mesocyclops leuckarti* das Bild. An Eutrophierungszeigern ist allenfalls *Cyclops vicinus* erwähnenswert, der allerdings nur am Anfang und Ende des Untersuchungszeitraums schwach vertreten ist. Calanoide Copepoden (*Eudiaptomus gracilis*) spielen eine untergeordnete Rolle. Die durchschnittliche Abundanz der Copepoden liegt bei 20,5 (Cyclopoide) bzw. 3,1 Ind. L⁻¹ (Calanoide), die maximale Abundanz bei 46 (Cyclopoide) bzw. 5 Ind. L⁻¹ (Calanoide) und gruppiert den See in den eutrophen Bereich.

Die Abundanzen der **Protozoen** liegen im Bültsee unterhalb 5 Ind. L⁻¹.

Die mittlere **Biomasse** des Zooplanktons beträgt im Bültsee im aktuellen Untersuchungsjahr 133 µg L^{-1} und gruppiert den See in den mesotrophen Bereich; maximal werden nur 211 µg L^{-1} erreicht (Abb. 13). Starke Massenbildner sind im Frühjahr (insbesondere März, April) die cyclopoiden Copepoden. Von Juni bis September treten die Cladoceren stärker hervor. Die Rotatorien stellen im Mittel immerhin 13, maximal sogar > 30 % (April) der Gesamtbiomasse.

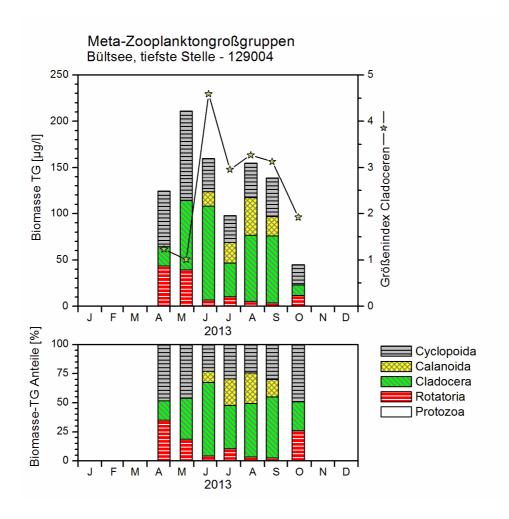


Abb. 13: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Bültsee, tiefste Stelle, 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

Nahrungsnetz

Der Bültsee liegt mit einem durchschnittlichen **Z/P**-total von 36 % d⁻¹ und einem Sommerwert von immerhin 31 % d⁻¹ ca. im mittleren Bereich der untersuchten Seen. Selbst in den Hochsommermonaten Juli und August liegt das Z/P bei 20 – 42 %, was für einen vergleichsweise noch guten Umsatz von Phytoplankton- in Zooplanktonmasse spricht. Schlecht fressbare Phytoplankter sind im Bültsee vergleichsweise schwach vertreten. Das günstigste Z/P wird für die Monate Mai und Juni gemessen (bis zu 72 % d⁻¹ im Mai), in denen gut fressbare Cryptophyceen (insbesondere im Mai) anteilig stark vertreten sind was – zeitlich verzögert - im Juni zu einem deutlichen Anstieg der Dichte effektiver Grazer führt. Ein "Gleichgang" von Phytoplankton- und Zooplanktonmasse lässt sich – mit zeitlicher Verzögerung der Zooplankton Peaks gegenüber den Phytoplankton Peaks - grob erkennen.

-63-

Der **Cladoceren-Größenindex** (GIC) liegt im Mittel nur bei 2,59 µg Ind.⁻¹; im Juni wird das Maximum mit nur 4,6 µg Ind.⁻¹ erreicht (Abb. 13).

5.7.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Bei geringen Nährstoffgehalten im kalkarmen Bültsee (Sondertyp) verweisen die ganzjährig geringen Planktongehalte und der ganzjährig hohe Anteil der Cryptophyceen und Chrysophyceen auf einen insgesamt intakten Zustand im Freiwasser des Sees (Tab. 14).

Der See wurde 2013 anhand der QK Phytoplankton mit **sehr gut** bewertet. Der Bültsee, der eine mittlere Tiefe von 3,0 m aufweist, wurde für die Bestimmung des Phyto-Seen-Indexes als Seetyp 11.2 eingestuft. Der Seetyp 11.2 gilt streng genommen nur für Seen mit mittlerer Tiefe < 3 m (MISCHKE et al. 2008). Der von hohen Bäumen umrandete Bültsee war 2013 trotz dieser geringen Tiefe im unteren Wasserkörper von Mai bis September temperaturgeschichtet, so dass die Nährstoffgehalte im oberen und unteren Waserkörper deutlich verschieden waren. Von daher erscheint die Einstufung in den Typ 11.2, was einer starken Polymixie entsprechen würde, nicht sinnvoll. Bei einer Einstufung in den Typ 11.1 wäre der PSI 1,1 und damit immer noch **sehr gut**.

Das Phytoplankton wurde zuletzt 2008 von März bis Oktober (8x) analysiert, vom gleichen Bearbeiter wie 2013 (ARP & MAIER 2009). Die Gehalte 2008 waren im Mittel auf einem ähnlich niedrigen Niveau. Auch 2008 waren Cryptophyceen und Chrysophyceen dominant, wie auch der Frühjahrspeak im April (Abb. 14).

Die signifikanten Unterschiede in der Sichttiefe, im Phosphorgehalt und letztendlich im Trophie-Index beider Jahre spiegeln sich wenig im mittleren Planktongehalt (nur Chl.a) und gar nicht im PSI wieder. Bei Betrachtung der Einzelwerte beider Jahre ist mehr erkennbar: Es zeigt sich ein erhöhter Planktongehalt im Sommer 2013 und im Gegensatz ein höherer Frühjahrspeak 2008 (Abb. 14). Der Grad der sommerlichen Temperaturschichtung ist in beiden Jahren ähnlich stark ausgeprägt. In der Summe ist die Trophie 2013 gegenüber 2008 um eine halbe Klasse erhöht, was sich jedoch nicht im PSI wiederspiegelt (Tab. 14).

Tab. 14: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den **Bültsee**.- <u>Erläuterungen</u>: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

Bültsee (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (μg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2008	3,7	0,016	7,0	0,8	1,9	0,8
2013	2,1	0,025	10,4	0,9	2,5	0,8

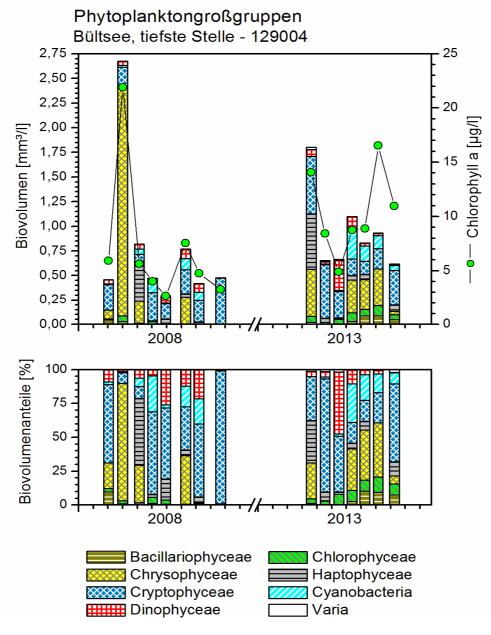


Abb. 14: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Bültsees, 2008 und 2013. Oben: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

Zooplankton

Die im aktuellen Untersuchungsjahr im elektrolytarmen Bültsee nachgewiesenen Zooplankton-Artenzahlen sind etwas höher als in früheren Untersuchungen (Speth 1998) und auch etwas höher als in der Untersuchung im Jahr 2008 (ARP & MAIER 2009). Die Zooplankton-Biomassen haben sich im aktuellen Untersuchungsjahr gegenüber dem Jahr 2008 kaum verändert (im Mittel 122 vs. 133 μg L⁻¹) und stufen den See nach TGL (1982) in den unteren mesotrophen Bereich ein. Typische Eutrophierungszeiger sind auch im aktuellen Untersuchungsjahr nur schwach vertreten. Zu nennen sind allenfalls das Rädertier *Pompholyx sulcata*, das nur im Juni etwas stärker hervortritt und das Rüsselkrebschen *Bosmina longirostris*. Der saisonale Ablauf zeigt nicht den im PEG Modell beschriebenen Verlauf.

-65-

Der mittlere **GIC** (2,6 µg Ind. ⁻¹) liegt – aufgrund der starken Präsenz der kleinen Rüsselkrebschen - im sehr niedrigen Bereich, was zusammen mit dem Fehlen von Raubcladoceren und Larven der Büschelmücken auf einen deutlichen Fraßdruck durch Fische hinweist. Litoral-Arten sind in den Frühjahrs- und Herbstproben vereinzelt präsent und indizieren einen gewissen Einfluss der Litoralzone in diesem See.

Der vergleichsweise noch günstige Umsatz von Phytoplankton- in Zooplanktonmasse bestätigt den überwiegend positiven Eindruck von diesem See. Günstig zu werten sind auch die geringen Schwankungen in der \mathbf{Z} / \mathbf{P} Relation zwischen Frühjahr und Sommer. Vermutlich wird der Umsatz von Phytoplanktonmasse in Zooplanktonmasse durch die Makrophyten gedrückt, da diese Alternativnahrung zum Phytoplankton (z.B. Bakterien) dem Zooplankton zur Verfügung stellen. Insgesamt ordnet das weitgehende Fehlen von typischen Eutrophierungszeigern sowie die vergleichsweise niedrigen Zooplankton-Biomassen (ganzjährig < 220 μ g L⁻¹) den Bültsee – innerhalb der untersuchten Seen - dem eher nährstoffärmeren Seentypus zu. SPETH (1998) kommt – anhand der Zusammensetzung der Rotatorienzönose – zu ähnlichen Ergebnissen.

5.8 Dobersdorfer See

St	Stammdaten, limnochemische und -biologische Mittelwerte 2013 + Indices								
Seetyp (Plkt.)	VQ [km² 10 ⁶ m ⁻³]	Fläche [km²]	Tiefe – mittel [m]	Tiefe – max [m]	th. Verweilzeit [a]				
14	1,3	3,17	5,3	18,8	2,4				
TP _{lm} [mg/l]	TN _{1m} [mg/l]	SiO ₂ -Si _{lm} [mg/l]	Sichttiefe [m]	Chl a [µg/l] Z _{integr.}	BV [mm³/l] Z _{integr.}				
0,042	1,23	1,12	1,1	18,9	2,5				
ZooplTG (mg/l)	Z/P (TG/TG) (% / d) Juli-Aug.	Trophie-Index (RIEDMÜLLER et al 2013) für 2012	Trophie-Index (RIEDMÜLLER et al 2013) für 2013	PSI ohne DiProf (PhyoSee 5.1) 2012	PSI ohne DiProf (PhyoSee 5.1) 2013				
0,19	14	3,2 - e2	3,0 - e2	3,3 - mäßig	2,7 - mäßig				
7	Tiefenkarte (lin	ks unten) und ob	erirdisches Einzug	gsgebiet (rechts u	nten)				
		Dobersdorfer See	Dobers dorf Stefands Gology Gology	Ceretineshaf is flusingration is spaintein in the spainte	Standard Ray				
		0 100 200 200 400 000 m	Mush a Moorachden and Recharg 193	Height of millioning the state of the state	Scientisch Scientisch Hohenderg Latherit Murker Laternete Granderpringe				

-66-

Der mit 317 ha sehr große Dobersdorfer See, im östlichen Hügelland im relativ kleinen Einzugsgebiet der Selkau gelegen (Kreis Plön), ist in großen Teilen des Sees deutlich polymiktisch und im tiefsten Becken vor dem Ortsteil Schlesen (> 10 m) in einzelnen Jahren auch längere Zeit während des Sommers geschichtet.

Das Einzugsgebiet ist vorwiegend landwirtschaftlich geprägt. Der Dobersdorfer See wird seit 1999 nahezu monatlich während der Vegetationsperiode untersucht. Die Proben wurden 2013 wie auch in allen Vorjahren an der tiefsten Stelle vor Schlesen entnommen. Der Trophiestatus ist eutroph.

5.8.1 Ergebnisse Phytoplankton

Zwischen April und November 2013 wurden 8 tiefenintegrierte Mischproben aus jeweils 0-6 m entnommen. Das Planktonbild des Dobersdorfer Sees war 2013 in der Sukzession anders als 2012, mit insgesamt geringeren Biomassen. Insgesamt wurden 2013 moderat erhöhte Chlorophyll a- Gehalte und Biovolumina ermittelt, mit einer stetigen Zunahme der Biomasse im Jahresverlauf bis zum Oktober (Jahresmittel: 18,9 µg l⁻¹ Chl a und 2,5 mm³ l⁻¹ Biovolumen, Tab. 5). Es dominieren vor allem Bacillariophyceen (Kieselalgen) sowie im Sommer Dinophyceen (Hornalgen) und im Sommer/Herbst Cyanobakterien (Abb. 15). Der Dobersdor-

fer See hat das typische jahreszeitliche Muster eines polymiktischen Sees, d.h. eine Zunahme der Biomasse zum Sommer und Frühherbst hin. Im Rahmen der EU-WRRL wurde der See 2013 mittels der Qualitätskomponente (QK) Phytoplankton mit **mäßig** bewertet (PSI ohne DI-PROF; genaueres zum PSI siehe Kap. 5.3).

Im April wurde wie auch in all den Jahren zuvor keine stark ausgeprägte Kieselalgenblüte ermittelt, 2013 mit noch geringeren Werten als in den Jahren zuvor. Es dominierten auch andere Arten als in den Vorjahren, d.h. weniger mittelgroße bis große Centrales, sondern eher pennale Formen wie *Asterionella formosa* (39 % Anteil an der Gesamtbiomase) und Formen aus der *Fragilaria ulna angustisssima*-Sippe (19 % Anteil). Erst im Mai bei abnehmender Blüte nahmen die Centrales, wie *Stephanodiscus neoastraea* (15 % Anteil) zu. Im Mai war die Hauptart im gesamten Plankton die fädige Form *Tribonema* aus der Gruppe der Xanthophyceen (in der Abb. unter "Sonstige" zusammengefasst). Die Gattung, die meist erst im Spätsommer/Herbst gehäuft auftritt, indiziert eine nicht allzu hohe Trophie.

Ab Juni bis zum Späthherbst waren die Cyanobakterien kontinuierlich eine der wichtigen Algengruppen. Dabei waren in allen Monaten wie in den Vorjahren *Microcystis aeruginosa* und *M. wesenbergii* die Hauptvertreter, mit Anteilen an der Gesamtbiomasse von 10 bis 23 % bei *M. aeruginosa* und 7 bis 20 % bei *M. wesenbergii*. Eine weitere häufigere Blaualgenart war von August bis November *Woronichinia naegeliana* (4 – 23 % Anteil)

Dinophyceen waren nur im Juli bis September häufiger anzutreffen, mit dem Hauptvertreter *Ceratium hirundinella* (20 – 38 % Anteil).

Im Herbst waren die Bacillariophyceen erwartungsgemäß wieder häufiger zu finden, vor allem im Oktober mit den koloniebildenden Arten *Aulacoseira ambigua* und *Aul. granulata* (zusammen 27 % Anteil).

Die gesondert entnommene Profundalprobe vom 12.09.2013 spiegelt in Teilen die Dominanz-Verhältnisse im Freiwasser wider. Es dominierten in der Schlammprobe Cyclotella balatonis mit 17 % Anteil an der gesamten Schalenzahl, Cyclostephanos dubius (13 % Anteil), Fragilaria brevistriata (11 % Anteil), Aulacoseira ambigua (9 % Anteil), Asterionella formosa (8 % Anteil) und Aulacoseira granulata (7 % Anteil). Die Schlammprobe aus dem oberen cm des Profundals repräsentiert die Verhältnisse etwa der letzten 3 Jahren (siehe Methodik Kap. 4.1). Weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF findet sich in Kap. 5.2.

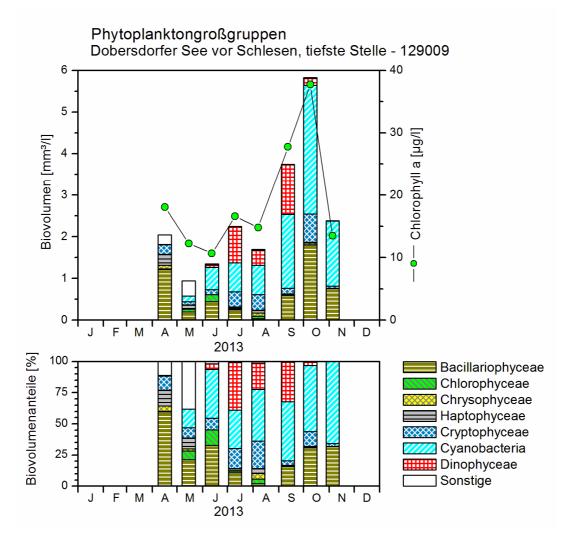


Abb. 15: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Dobersdorfer Sees 2013. Oben: Absolute Biovolumina. Unten: Prozentuale Anteile.

5.8.2 Ergebnisse Zooplankton

Im Dobersdorfer See wurden im aktuellen Untersuchungsjahr 2013 insgesamt 45 Taxa des Metazooplanktons nachgewiesen (27 Rotatorien, 9 Cladoceren und 9 Copepoden). Erwähnenswert ist die Präsenz der "Buckelbosminen" (*B. coregoni thersites*), die auch dieses Jahr wieder vertreten waren und die sonst relativ selten in Seen Schleswig Holsteins zu finden sind. Neben den oben genannten Metazooplankton-Taxa wurden Larven der Büschelmücken, Larven der Dreikantmuschel und Raubcladoceren (der Glaskrebs *Leptodora kindtii*) nachgewiesen. An Protozoen wurden zusätzlich 5 Taxa differenziert, wobei insbesondere das Urnentierchen *Tintinnopsis* sowie Schalenamöben relativ häufig waren. Der Dobersdorfer See gehört somit zu den artenreicheren Seen.

Das **Rotatorienplankton** wurde im April von den allgemein häufigen Arten *Keratella cochlearis* und *Keratella quadrata* dominiert. Beide Taxa machen zu dieser Zeit > 80 % der Rotatorienzönose aus. In den Folgemonaten (Mai bis Juli) kommen "Flossenrädertiere" (*Polyarthra dolichoptera* und *Polyarthra vulgaris*) und in den Hochsommermonaten noch Eutrophierungszeiger, wie *Pompholyx sulcata* und *Keratella cochlearis tecta* stark auf. Nahrungs-

spezialisten sind schwach vertreten. Gegen Ende des Untersuchungszeitraumes bestimmt wieder *Keratella cochlearis* das Bild. Mit durchschnittlich 310,9 und maximal 674 Ind. L⁻¹ weist der Dobersdorfer See vergleichsweise hohe Rotatorien-Abundanzen auf, die für (schwach) eutrophe Seen typisch sind.

-69-

Das **Cladoceren** Plankton besteht zu Beginn der Untersuchung im April überwiegend aus kleinen Rüsselkrebsen (*Bosmina longirositris*), die allerdings nur in geringer Abundanz vorhanden sind. Ab Mai kommen Daphnien (*Daphnia cucullata* und *Daphnia galeata*) und das Linsenkrebschen (*Chydorus sphaericus*) stärker auf, wobei die Daphnien insbesondere im Juni das Bild bestimmen. Die oben genannten "Buckelbosminen" (*Bosmina coregoni thersites*) treten v. a. in der zweiten Untersuchungshälfte in Erscheinung. Hervorzuheben ist die anteilig starke Präsenz des Linsenkrebschens (Eutrophierungszeiger) im Hochsommer (August), wo es ca. 60 % der Cladocerenzönose stellt. Raubcladoceren (*Leptodora kindtii*) waren von Juni bis September in den Proben vorhanden. Die mittlere Abundanz der Cladoceren beträgt im Dobersdorfer See knapp 23 Ind. L⁻¹; das Maximum liegt bei 63 Ind. L⁻¹. Der Dobersdorfer See weist damit Cladoceren-Abundanzen auf, wie sie in eutrophen Seen zu finden sind.

Das **Copepodenplankton** wird zu Beginn der Untersuchung von dem calanoiden Copepoden *Eudiaptomus graciloides* und cyclopoiden Copepoden der Gattung *Cyclops (Cyclops kolensis* und *Cyclops vicinus*) dominiert. Im Sommer bis hinein in die Herbstmonate ist das Copepodenplankton artenreich zusammengesetzt, wobei *Mesocyclops leuckarti* die dominante Art ist. Hervorzuheben ist die vergleichsweise deutliche Präsenz von *Acanthocyclops robustus* (z.B. ca. 14 % der Copepodenzönose im August), einer Art, die eutrophe Bedingungen indiziert. Die mittlere Abundanz der calanoiden Copepoden liegt bei 4,6, die der cyclopoiden Copepoden bei 10,2 Ind. L⁻¹. Maximal wurden 11 (Calanoida) bzw. 18 Ind. L⁻¹ (Cyclopoide) erreicht. Damit liegt der Dobersdorfer See im aktuellen Untersuchungsjahr hinsichtlich der Copepodenabundanz eher im mittleren, mesotrophen Bereich.

Bei den **Protozoen** sind das Urnentierchen (*Tintinnopsis* sp.) mit immerhin maximal knapp 70 Ind. L⁻¹ sowie Schalenamöben (*Difflugia* sp.) mit ca. 50 Ind. L⁻¹ zu nennen.

Die mittlere **Biomasse** des Zooplanktons liegt im Dobersdorfer See bei 185 μg L⁻¹ und damit nach TGL (1982) im aktuellen Untersuchungsjahr im mesotrophen Bereich. Maximal werden 329 μg L⁻¹ erreicht (Abb. 16). Starke Massenbildner sind im Frühjahr die cyclopoiden Copepoden, im Sommer und Herbst die Cladoceren. Die Rotatorien erreichen im Juli deutlich > 30 % der Gesamtbiomasse, im Mittel allerdings nur 7 %.

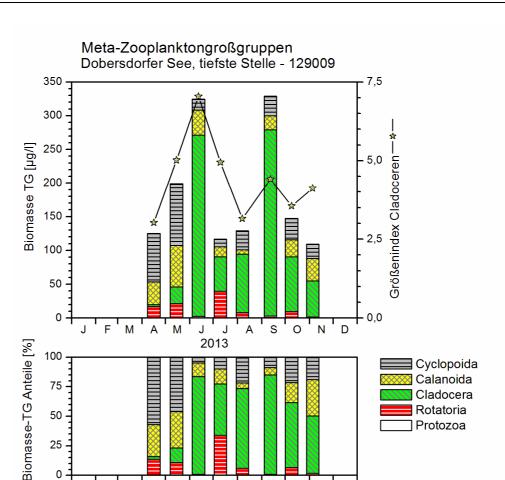


Abb. 16: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Dobersdorfer See 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

Nahrungsnetz

Der Dobersdorfer See zeigt im aktuellen Untersuchungsjahr – wie bereits im Vorjahr – ein relativ niedriges Z/P Verhältnis (Umsatz von Phytoplankton- in Zooplanktonmasse). Der durchschnittliche Umsatz von Phytoplankton- in Zooplanktonmasse liegt bei 22 % d⁻¹, der Sommerwert bei nur 14 % d⁻¹. Werte von knapp unter bzw. etwas über 50 % d⁻¹ werden nur in den Monaten Mai und Juni erreicht und weisen auf einen stärkeren Fraßdruck auf das Phytoplankton in diesen Monaten hin. Der Verlauf von Phyto- und Zooplanktonmasse verläuft allerdings nicht völlig entkoppelt. Zumindest sind mit den Anstiegen der Phytoplanktonmasse von Mai zum Juni bzw. Juli und vom August zum Oktober hin, Anstiege der Zooplanktonmasse zu verzeichnen. Nahrungslimitierung für die Daphnien besteht allenfalls im Monat Mai nach einem Rückgang der gut fressbaren Cryptophyceen und Bacillariophyceen, deren Massen aber bereits im Juni wieder etwas ansteigen.

Der Cladoceren-Größenindex (GIC) liegt im Mittel bei 4,4 µg Ind.⁻¹, maximal bei 7,0 µg Ind.⁻¹ (Juni) (Abb. 16), Letzteres bedingt durch die "relativ starke" Präsenz von Daphnien zu dieser Zeit.

5.8.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Der großflächige Dobersdorfer See ist ein polymiktischer, planktondominierter Flachsee, mit fast ganzjährigem verstärktem Auftreten von Bacillariophyceen und sommerlicher und frühherbstlicher Dominanz der Dinophyceen und Cyanobakterien, die in der Regel die höchsten Biomassen des Jahres erreichen. Der See wird seit Ende der 1990er Jahre regelmäßig limnochemisch und planktologisch untersucht. Die Nährstoffgehalte der letzten Jahre sind meist moderat, die Planktongehalte teils deutlicher erhöht. Der See wurde 2013 anhand der QK Phytoplankton mit **mäßig** bewertet, wie in den meisten Jahren zuvor (Tab. 15, Abb. 17). Diese Einstufung ist vor dem Hintergrund der erhöhten, wenn auch nicht sehr hohen sommerlichen Blaualgenblüte plausibel.

In den letzten 5 Jahren gab es bei Betrachtung der Jahresmittelwerte größere Schwankungen im Planktongehalt als bei der Sichttiefe und dem Phsophorgehalt. In den Jahren 2010 und 2013 wurden die geringsten Gehalte analysiert, sowohl beim Chl.a als auch Biovolumen und abgeschwächt auch beim Phosphor. In beiden Jahren war anders als 2009, 2011 und 2012 das tiefe Becken vor Schlesen im Zeitraum Mai bis September stabil geschichtet, was den Austausch von nährstoffreichem Tiefenwasser und Epilimnion deutlich reduziert hat, mit der Folge eines geringeren Planktonwachstums. In beiden genannten Jahren 2010 und 2013 wiesen der Trophi-Index und PSI die geringsten Werte auf (Tab. 15).

Tab. 15: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den **Dobersdorfer See.**- Erläuterungen: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

DobersdorferSee (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2009	1,1	0,047	27,8	3,5	3,3	3,4
2010	1,3	0,038	20,4	2,8	3,0	2,8
2011	1,1	0,063	40,4	6,8	3,4	3,7
2012	1,1	0,043	28,4	4,1	3,2	3,3
2013	1,1	0,042	18,9	2,5	3,0	2,7

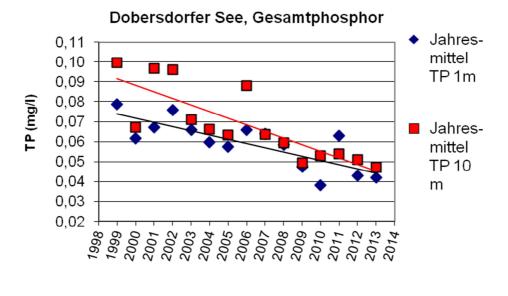
Zahlreiche Altdaten aus dem letzten Jahrzehnt liegen zum Phytoplankton vor, am aktuellsten von ARP 2005b, ARP & DENEKE 2006 und 2007, KASTEN & MICHELS 2008, ARP & MAIER 2009 und ARP, KASTEN & MAIER 2010 und 2011, ARP & MAIER 2012 und ARP, MAIER & MICHELS 2013.

Im **Frühjahr** sind in den letzten Jahren bei Dominanz der Bacillariophyceen die dominanten Arten meist centrische Formen (*Stephanodiscus neoastraea, Cyclotella radiosa*). In den Jahren 2010 und 2013 waren Pennales, meist *Fragilaria*-Arten, sehr stark vertreten. Im **Herbst**

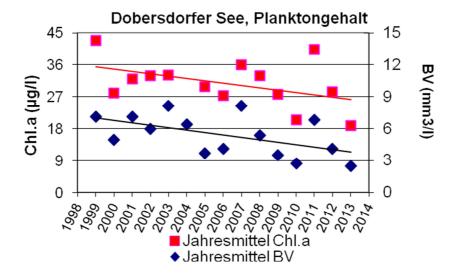
sind alljährlich wie auch 2013 die schlecht fressbaren Arten *Aulacoseira ambigua* + *granula-ta* die Hauptarten der Bacillariophyceen.

-72-

Im **Sommer** war der Planktongehalt in allen Jahren wie auch 2013 meist von Dinophyceen (*Ceratium*) und Cyanobakterien (*Microcystis*) geprägt. *Ceratium* und *Microcystis* überwintern im nährstoffreichen Sediment, und treiben im Frühjahr/Sommer nach oben. Die Stärke ihrer jeweiligen Dominanz in einem Jahr ist zum einen davon abhängig, wie die Bedingungen im Frühjahr für das beginnende Wachsen und Auftreiben aus dem Sediment sind (u.a. Temperatur, Licht). Die Schichtungsverhältnisse und daraus resultierend die Nährstoffbedingungen im Freiwasser sind dann der weitere wichtige Faktor für das Wachstum. Die Phosphorgehalte in 1 m Tiefe haben sich im letzten Jahrzehnt zwar signifikant reduziert (Abb. 17), aber die 2 genannten mobilen Arten leben lange Zeiten des Jahres im Sediment und können im Sommer in tiefere phosphorgehalt im gesamten Wasserkörper noch deutlicher abnimmt.


Betrachtet man die letzten **15 Jahre** im Dobersdorfer See, so bewegt sich die Trophie im Bereich zwischen 3,0 und 3,5 (nach Trophietool von RIEDMÜLLER et al. 2013), mit leichtem Abwärtstrend in den letzten 5 Jahren. Es gibt beim Phosphor einen deutlichen Abwärtstrend (nahezu Halbierung) in 1 m und 10 m Tiefe und einen schwächeren verzögerten Abwärtstrend bei der Planktonbiomasse, was sich in der Trophie widerspiegelt (Abb 17).

Der Phyto-See-Index (PSI) schwankt seit 10 Jahren innerhalb der Stufe 3 (mäßig), davor eher in der Stufe 4 (unbefriedigend). Auffällig sind die sehr geringen Werte 2010 und 2013 (Abb. 38). Hier fallen 2 Dinge zusammen, 1. die geringen Phosphorgehalte und die stabile sommerliche Schichtung von Mai bis September. Je geringer in einem Jahr die Phosphorgehalte insgesamt und im Sommer sind, desto stärker wird der Planktongehalt absinken.


Zooplankton

Der Dobersdorfer See wurde bereits im Jahr 2003 von SPIEKER et al. (2004) hinsichtlich des Zooplanktons untersucht. Angaben zur Biomasse liegen für die Jahre 2005 bis 2013 vor (ARP & DENEKE 2006 und 2007; KASTEN & MICHELS 2008; ARP & MAIER 2009; ARP, KASTEN & MAIER 2011; ARP & MAIER 2012; ARP, MAIER & MICHELS 2013).

Die mittleren Biomassen indizieren bis zum Jahr 2010 eutrophe Bedingungen. Ab dem Jahr 2011 bis hin zum aktuellen Untersuchungsjahr ist ein Rückgang der mittleren Zooplankton-Massen zu verzeichnen, bis in den mesotrophen Bereich (nach TGL 1982), wobei die letzten beiden Jahre in der mittleren Biomasse mit 182 und 185 μg L⁻¹ gleich sind. Der mittlere GIC liegt im aktuellen Jahr bei niedrigen bis moderaten 4,4 μg Ind.⁻¹, steigt aber zur Zeit des Daphnien-Maximums im Juni auf 7 μg Ind.⁻¹ an (Tab. 16).

-73-

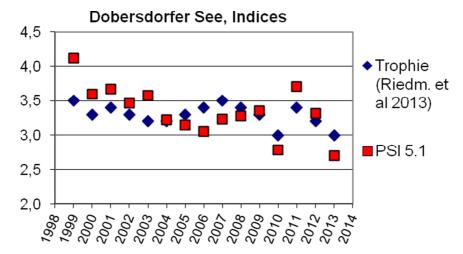


Abb. 17: Jahresmittel verschiedener Parameter und Indices des Phytoplanktons und der Trophie im Dobersdorfer See 1999 – 2013 (Phosphor immer aus 1m Tiefe, Chl.a und Phytopl. bis Mai 2005 aus 1 m, danach meist aus 0 - 6 m).

Wie in den Vorjahren ist das starke Aufkommen des Linsenkrebschens, eines Eutrophierungszeigers im Sommer, zu nennen. Eutrophierungszeiger sind – neben dem Linsenkrebschen z.B. mit *Pompholyx sulcata* bei den Rädertieren oder *Acanthocyclops robustus* bei den Ruderfußkrebsen – ebenfalls wie in den Vorjahren reichlich vorhanden. Ein saisonaler Ablauf nach PEG Modell für eutrophe Seen ist im aktuellen Jahr zu erkennen. Nach dem Daphnien-Maximum im Juni erfolgt ein Rückgang der großen Filtrierer in den Sommermonaten und im Herbst wieder ein Anstieg derselben.

-74-

Aufgrund der Präsenz von Büschelmücken Larven und Raubcladoceren ist der Fraßdruck durch Fische im aktuellen Jahr nur als moderat einzustufen, was sich auch im (leichten) Anstieg des **GIC** im aktuellen Jahr gegenüber den beiden Vorjahren zeigt.

Hinsichtlich des Verlaufs von Phytoplankton- und Zooplanktonmasse sind im aktuellen Jahr "Übereinstimmungen" zu sehen, wobei der Umsatz von Phytoplankton- in Zooplanktonmasse im niedrigen Bereich liegt. Ein nennenswerter Fraßdruck auf das fressbare Phytoplankton besteht nur in den späten Frühjahrsmonaten. Insgesamt ist – was das Zooplankton, den GIC und bedingt den Umsatz von Phytoplankton- in Zooplanktonmasse bzw. die Kopplung der letztgenannten Parameter angeht (**Z/P** in %/d während der Veg.periode) – eine leichte Verbesserung im aktuellen Jahr gegenüber den Jahren 2011 und 2012 festzustellen, gegenüber 2005 bis 2008 jedoch insgesamt eine Verschlechterung (Tab. 16).

Tab. 16: Vergleich wichtiger Parameter (Jahresmittel) des Zooplanktons im Vergleich 2013 mit früheren Jahren für den **Dobersdorfer See**.- <u>Erläuterungen</u>: GIC = Größenindex Cladoceren. Z/P = Zoopl.- zu Phytoplanktonbiomasse auf Trockengewichts-Basis (in %/d).

Dobersd. See	Deneke	Deneke	Michels	Maier	Maier	Maier	Maier	Maier	Maier
Jahr	2005	2006	2007	2008	2009	2010	2011	2012	2013
Biomasse									
(μg L-1)	550	350	440	495	305	360	218	182	185
% Rotatorien	4	12	3	5	4	2	5	6	7
%Cladoceren	30	42	54	38	41	53	39	38	57
% Calanoide	32	27		32	26	27	32	26	16
% Cyclopoide	34	20		25	29	18	24	31	20
GIC (µg Ind1)	3,5	3,4	9,7	4,0	6,6	7,0	3,2	2,8	4,4
Z/P Veg.P (%/d)	49	48		37	22	29	9	12	22
Z/P Somm.(%/d)	22	12		16	18	21	6	17	14

5.9 Garrensee

Stammdaten, limnochemische und -biologische Mittelwerte 2013 + Indices									
Seetyp (Plkt.)	VQ [km ² 10 ⁶ m ⁻³]	See-Fläche [km²]	Tiefe – mittel [m]	Tiefe – max [m]	th. Verweilzeit [a]				
88.3 (13)	0,5	0,18	9,9	23,3	6,4				
TP _{1m} [mg/l]	TN _{1m} [mg/l]	SiO ₂ -Si _{1m} [mg/l]	Sichttiefe [m]	Chl a [µg/l] Z _{integr.}	BV[mm³/l] Z _{integr.}				
0,014	0,55	0,06	2,9	5,0	0,6				
ZooplTG (mg/l)	Z/P (TG/TG) (% / d) Juli-Aug.	Trophie-Index (RIEDMÜLLER et al 2013) für 2009	Trophie-Index (RIEDMÜLLER et al 2013) für 2013	PSI ohne DiProf (PhyoSee 5.1) 2009	PSI ohne DiProf (PhyoSee 5.1) 2013				
0,06	19	2,5 – m2	1,9 – m1	(3,1) - mäßig	(1,5) - gut				
7	Tiefenkarte (lin	ks unten) und ob	erirdisches Einzug	gsgebiet (rechts u	inten)				
Garrens	See	70 700 200 m	Kreis orst	NSG Garrenseeholz	NSU Hagelgrah. Pammi Farcha				

-75-

Der im Kreis Herzogtum Lauenburg liegende Garrensee ist ein Toteissee aus der Weichseleiszeit. Er befindet sich in der Ratzeburger Seenplatte östlich von Ratzeburg (LANU 2002).

Der 18 ha kleine und kalkarme See (Sondertyp 88.3) weist ein kleines Einzugsgebiet auf, hat eine hohe Wasseraufenthaltszeit (theor. Verweilzeit: 6,4 a) und ist relativ tief (mittlere Tiefe 9,9 m). Der See ist besonders kalkarm (ca. 5 mg/l Calcium → etwa 3fach geringere Calciumwerte als der Bültsee, Ihlsee und Blankensee bei Lübeck). Wegen der Kalkarmut und der geringen Trophie (m1) ist der See von besonderer Bedeutung, z.B. in floristischer Hinsicht (STUHR 2007). Der Garrensee ist ein bestehendes Naturschutzgebiet und Teil des europäischen Schutzgebietssystems Natura 2000 (LANU 2002).

5.9.1 Ergebnisse Phytoplankton

Zwischen Mai und Oktober 2013 wurden 7 tiefenintegrierte Mischproben aus 0-5 bis 0-10 m entnommen. Der stabil geschichtete See weist bei sehr geringen Phosphorgehalten entsprechend geringe Planktongehalte auf, mit gering schwankenden Werten im Jahresverlauf (Jahresmittel: 5,0 µg I⁻¹ Chl a und 0,56 mm³ I⁻¹ Biovolumen, Tab. 5). Außer einer Grünalgenblüte Anfang Mai dominieren im gesamten Jahr Cyanobakterien (Blaualgen) und abgeschwächt mit zunehmendem Jahresverlauf Cryptophyceen (Schlundalgen) und Haptophyceen. Dinophyceen (Hornalgen) sind ganzjährig subdominant vertreten (Abb. 17a). Im Rahmen der EU-WRRL wurde der See 2013 mittels mittels der Qualitätskomponente (QK) Phytoplankton mit **gut** bewertet (PSI ohne DI-PROF), wobei dies eingeschränkt gilt, da der See sehr kalkarm ist (genaueres zum PSI siehe Kap. 5.3).

Anfang Mai dominieren in dem silikatarmen See Chlorophyceen (Grünalgen). Es herrschten 2013 die coccalen Formen *Monoraphidium komarkovae* (40 % Anteil an der Gesamtbiomasse) und eine sehr kleine kugelige nicht zu identifizierende Art (27 % Anteil) vor.

Wie auch schon 2007 bis 2009 in ähnlicher Weise beobachtet (ARP, KASTEN & MAIER 2010), zeigte die Planktonentwicklung im Frühsommer innerhalb eines Monats von Anfang Mai bis Anfang Juni einen deutlichen Typwechsel von einer Grünalgen- hin zu einer Blaualgendominanz. Anders als damals war jedoch auch im Sommer das Biomasseniveau niedrig. Es dominierten im Juni deutlich picoplanktische Blaualgen (*Aphanotece* mit 81 % Anteil), während *Ceratium hirundinella* sowie *Peridinium willei* aus der Gruppe der Dinophyceen jeweils nur 5 % Anteil aufwiesen.

Auch im Juli traten kleinzellige Blaualgen stark hervor. Dies waren Anfang des Monats besonders *Aphanotece* (23 % Anteil) und die neu auftretende Art *Radiocystis geminata* (50 % Anteil). *Anabaena* cf. *danica*, die vor 4 Jahren noch die bestandsbildende Art mit hohen Biomassen im Sommer war (ARP, KASTEN & MAIER 2010), wies nun beim ersten Auftreten 2013 Anfang Juli nur einen Anteil von 2 % auf. Fast einen Monat später, Ende Juli war der Anteil auf 13 % gestiegen, wobei die Biomasse weiterhin sehr gering war. Wie schon 2009 beschrieben (ARP, KASTEN & MAIER 2010), handelt es sich bei der genannten Art möglicherweise auch um *Anabaena elliptica*. *Aphanotece* war Ende Juli erneut sehr dominant (56 % Anteil).

Danach im August bis Oktober nahm der Anteil von *Anabaena* cf. *danica* weiter zu, mit Anteilen von 33 % Ende August, 45 % Ende September und 42 % Anteil Ende Oktober, wobei die absolute Biomasse kaum zunahm. Neben Crytophyceen wies der kleine Flagellat *Chrysochromulina parva* aus der Gruppe der Haptophyceen im gleichen Zeitraum auch erhöhte Anteile auf, Ende August 30 % Anteil und im September und Oktober 10 und 11 %.

Neben diesen dominierenden Taxa der verschiedenen Algengruppen waren 2013 ebenso Arten vorhanden, die einerseits eine geringe Biomasse und andererseits eine geringe Trophie indizieren. Dazu zählen aus der Gruppe der Cyanobakterien *Anabaena lemmermannii* und *Coelosphaerium kuetzingianum*, aus der Gruppe der Chlorophyceen *Willea vilhelmii*, aus der Gruppe der Bacillariopyceen *Cyclotella ocellata* und *Bitrichia chodatii* (Chrysophyceen).

Die gesondert entnommene Profundalprobe vom 25.09. 2013 ergab in der Zusammensetzung eine starke Dominanz von 2 pennalen Arten, zum einen *Fragilaria tenera* (43% Anteil) und *Asterionella formosa* (25 % Anteil). Beide Arten wurden auch im Freiwasser gefunden, aufgrund der geringen Silikatmengen jedoch im Verhältnis zu den anderen Algengruppen in geringen Anteilen (weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF siehe Kap. 5.2).

-77-

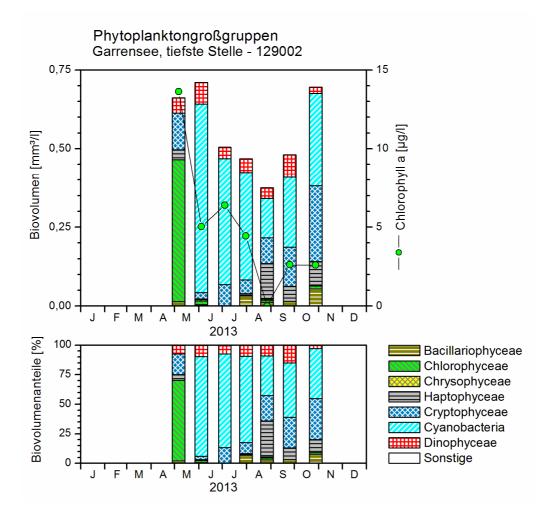


Abb. 17a: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Garrensees 2013. Oben: Absolute Biovolumina. Unten: Prozentuale Anteile.

5.9.2 Ergebnisse Zooplankton

Im Garrensee wurden 36 Metazooplankton-Taxa (20 Rotatorien, 8 Cladoceren und 8 Copepoden) erfasst. An Protozoen wurden nur vagile Ciliaten differenziert, wobei deren Abundanzen im sehr niedrigen Bereich blieben. Larven der Büschelmücken (*Chaoborus* sp.) und Raubcladoceren (der Glaskrebs *Leptodora kindtii*) waren ebenfalls in den Proben vorhanden, wobei Büschelmücken Larven vergleichsweise häufig waren. Der Garrensee gehört eher zu den artenärmeren Seen.

Beim Rotatorienplankton trat den größten Teil des Jahres (Ausnahme Juli und August) die allgemein häufige Art Keratella cochlearis stark hervor. Ebenfalls stark vertreten im gesam-

ten Untersuchungszeitraum waren *Kellicottia longispina* und Flossenrädertiere (insbesondere *Polyarthra vulgaris*). Nahrungsspezialisten (Gattungen *Ascomorpha*, *Gastropus*, *Trichocerca*) waren in der warmen Jahreszeit deutlich präsent. Innerhalb der Nahrungsspezialisten ist das Taxon *Gastropus hyptopus* hervorzuheben, das in anderen Seen nur selten bzw. nicht zu finden ist. Die durchschnittliche Rotatorien-Abundanz lag im Garrensee bei 411,6 Ind. L⁻¹, das Abundanz-Maximum bei 1601 Ind. L⁻¹ (Mai). Der Garrensee liegt damit hinsichtlich der Rotatorienabundanz bereits im eutrophen Bereich.

-78-

Hinsichtlich der **Cladoceren** ist der Garrensee ein Daphnien-dominierter See. Daphnien stellen praktisch im gesamten Untersuchungszeitraum den Hauptanteil der Cladoceren. Rüsselkrebse (*Bosmina longirostris*) und Arten der Gattung *Ceriodaphnia* treten nur im Hochsommer (August) stärker hervor und machen nur zu diesem Zeitpunkt > 50 % (ca. 59 %) der Cladocerenzönose aus. Die Daphnien im Garrensee sind taxonomisch schwer einzuordnen, da intermediäre Morphen zwischen *Daphnia galeata* und *Daphnia hyalina* vorkommen. Erschwerend wirkt sich auch aus, dass das Taxon *Daphnia hyalina* als selbständige Art umstritten ist. Die mittlere Abundanz der Cladoceren liegt im Garrensee bei knapp 2,4 Ind. L⁻¹, das Maximum bei 5 Ind. L⁻¹. Hinsichtlich der Cladoceren-Abundanz liegt der See im unteren, noch oligotrophen Bereich.

Im **Copepodenplankton** des Garrensees wird im Frühjahr durch den calanoiden Copepoden *Eudiaptomus gracilis* und Arten der Gattung *Cyclops (Cyclops kolensis* und *Cyclops vicinus)* dominiert. Daneben ist bereits Anfang Mai (bei der ersten Probenahme) *Thermocyclops oithonoides* in Form von adulten Männchen und Weibchen stark vertreten, die sich sicherlich aus von der Diapause aufsteigenden C5 Copepodiden entwickelt haben. In den Sommer- und Herbstmonaten ist *Thermocyclops oithonoides* das aspektbestimmende Copepoden Taxon. Die durchschnittliche Abundanz der Copepoden liegt bei 5,8 (Cyclopoide) bzw. 1,0 Ind. L⁻¹ (Calanoide), die maximale Abundanz bei 10 (Cyclopoide) bzw. 4 Ind. L⁻¹ (Calanoide) und gruppiert den See in den oligotrophen Bereich.

Die **Protozoen** sind im äußerst schwach vertreten. Vagile Ciliaten sind präsent. Ihre Abundanzen liegen aber unterhalb 2 Ind. L⁻¹.

Die mittlere **Biomasse** des Zooplanktons beträgt im Garrensee im aktuellen Untersuchungsjahr nur 60,3 μg L⁻¹ und gruppiert den See deutlich in den oligotrophen Bereich; maximal werden nur 118 μg L⁻¹ erreicht (Abb. 17). Vergleichsweise starke Massenbildner sind im Garrensee die Rädertiere, die im Mittel 23 % der Gesamtbiomasse stellen und maximal sogar 40 % (Mai) erreichen. In den Sommermonaten sind allerdings die Cladoceren die stärksten Massenbildner und am Ende des Untersuchungszeitraumes die cyclopoiden Copepoden.

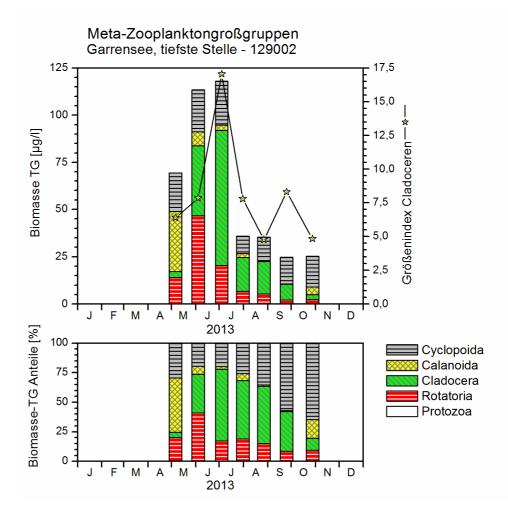


Abb. 17b: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Garrensee 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

Nahrungsnetz

Der Garrensee weist in den Monaten Juni bis Anfang Juli, in denen effektive Filtrierer massenmäßig stärker vertreten sind einen vergleichsweise günstigen Umsatz von Phytoplanktonin Zooplanktonmasse auf. **Die Z/P** Relation liegt in diesem Zeitraum bei immerhin 35 bis 51 % d⁻¹. Der Fraßdruck seitens des Zooplanktons auf das Phytoplankton ist vergleichsweise hoch, was sich am Rückgang der gut fressbaren Cryptophyceen (und coccalen Chlorophyceen) zeigt. In den Sommer- und Herbstmonaten fällt das Z/P Verhältnis auf 8 bis 21 % d⁻¹, was innerhalb der untersuchten Seen bestenfalls einen mittleren Wert darstellt. Der Fraßdruck auf das Phytoplankton durch das Zooplankton ist im Sommer aufgrund der abnehmenden Masse an effektiven Filtrierern niedriger als im Frühjahr; die Biomasse der Cryptophyceen nimmt wieder zu. Zwischen dem Jahresgang der Phytoplanktonmasse und der Zooplanktonmasse gibt es Parallelen. Auf den Anstieg der Phytoplanktonmasse im April / Mai erfolgt ein Anstieg der Zooplanktonmasse vom April bis in den Juni hinein. Der anschließende Rückgang der Phytoplanktonmasse hat einen Rückgang der Zooplanktonmasse zur Folge. Auf den Wiederanstieg der Phytoplanktonmasse zum Ende der Vegetationsperiode folgt allerdings kein Anstieg in der Zooplanktonmasse.

Der Cladoceren-Größenindex (GIC) liegt im Garrensee im Mittel bei 8,14 µg Ind. 1; und ist als hoch zu bezeichnen. Im Juni wird das Maximum mit 17,1 µg Ind. 1 erreicht, was auf die starke Präsenz der Daphnien (und geringe Präsenz der kleinen Rüsselkrebse und Cerioddaphnien) zurückzuführen ist (Abb. 17b).

5.9.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Der Garrensee ist ein relativ kleiner, silikat- und sehr kalkarmer geschichteter See (Sondertyp 88.3), der 2013 erstmalig seit den Untersuchungen 2008 ganzjährig geringe Planktongehalte aufweist. Er wird trotz geringer Nährstoffgehalte im Sommer und Herbst von verschiedenen Blaualgenarten dominiert, vor allem einer *Anabaena*-Art, die auch schon 2008 und 2009, dann jedoch vermehrt, auftrat. Diese Art ist keine Indikatorart für den im Rahmen der EU-WRRL zu ermittelnden Phyto-See-Index. Der Garrensee wurde 2013 anhand der QK Phytoplankton mit **gut** an der Grenze zu **sehr gut** bewertet, wobei dieser Wert aufgrund des sehr geringen Kalkgehaltes eingeschränkt bzw. nur testweise gilt (weiteres dazu Kap. 5.3).

Zum Phytoplankton liegen aus dem letzten Jahrzehnt Altdaten von 2008 (ARP & MAIER 2009) und 2009 (ARP, KASTEN & MAIER 2010) vor. Alle Analysen von 2008, 2009 und 2013 wurden vom gleichen Bearbeiter durchgeführt. Der Garrensee hat sich gegenüber 2008 und 2009 vor allem in der Höhe des Planktongehaltes verändert, mit deutlicher Abnahme der sommerlichen Blaualgengehalte, während die Phosphorwerte im Mittel weniger stark abnahmen (Tab. 17, Abb. 18).

In allen drei Jahren war die erste Jahreshälfte durch geringe Planktongehalte gekennzeichnet, mit starker Dominanz vor allem von coccalen Grünalgen und Cryptophyceen, bedingt auch durch das Fehlen von Bacillariophyceen. Im Sommer und Herbst dominiert in allen genannten Jahren die nostocale Art *Anabaena cf. danica* (möglicherweise auch *Anabaena cf. elliptica*), jedoch 2013 weniger dominant und vor allem in deutlich geringerer Biomasse als 2008 und 2009.

Das Auftreten von Arten mit geringen Trophieansprüchen, das auch 2008 und 2009 bis Juli stattfand, hat 2013 in der Anzahl noch zugenommen.

Die starke Dominanz und hohe sommerliche Biomasse der nostocalen Gattung *Anabaena* 2008 und 2009 und die Verhältnisse in den Jahren davor werden bei ARP & MAIER (2009) und besonders ARP, KASTEN & MAIER (2010) beschrieben. Mögliche Gründe dafür werden genannt.

Die Folge der drastischen Veränderungen in der Biomasse im Sommer von 2008/09 zu 2013 sind ein abnehmender Trophiewert um etwa eine halbe Klasse und ein stärkerer Sprung des PSI über anderthalb Klassen von Klasse 3 zu Klasse 2 an der Grenze zu Klasse 1 (Tab. 17).

Tab. 17: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den **Garrensee**.- <u>Erläuterungen</u>: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

Garrensee (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2008	2,8	0,018	14,0	3,8	2,3	(2,7)
2009	1,9	0,016	20,2	6,4	2,5	(3,1)
2013	2,9	0,014	5,0	0,6	1,9	(1,5)

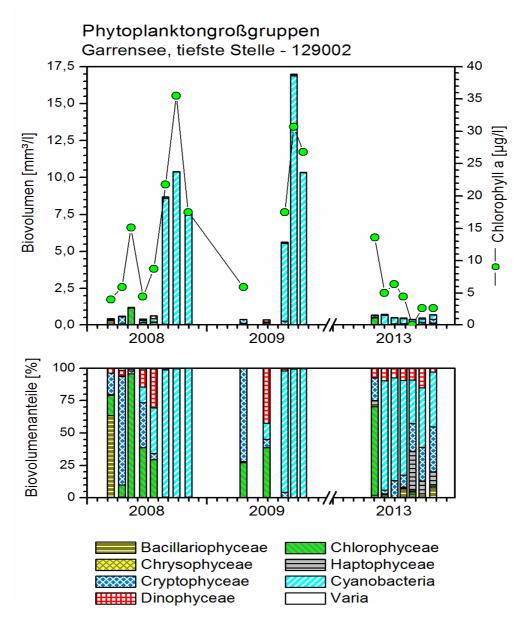


Abb. 18: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Garrensees, 2008, 2009 und 2013. Oben: Absolute Biovolumina. Unten: Prozentuale Anteile.

Zooplankton

Der Garrensee gehört – wie z.B. der Bültsee - zu den elektrolytarmen Seen innerhalb der untersuchten Seen. Biomassenangaben liegen für die Jahre 2008 und 2009 vor (ARP & MAIER 2009; ARP, KASTEN & MAIER. 2010), wobei die Werte ausnahmslos im unteren, niedrigen, meso- bis oligotrophen Bereich liegen. Der höchste Biomassenwert mit 131 μg L⁻¹ wurde im Jahr 2008 gemessen. Im Jahr 2009 und im aktuellen Untersuchungsjahr liegen die mittleren Massen bei sehr niedrigen 75 bzw. 60 μg L⁻¹. Neben der niedrigen Zooplanktonmasse, die natürlich auf einer niedrigen Abundanz der Crustaceen basiert, fallen im Garrensee die hohen Anteile der effektiven Filtrierer insbesondere in den Monaten Juni, Juli und September auf, was sich in einem GIC von ca. 8 bis 17 μg Ind.⁻¹ niederschlägt. Der hohe GIC zusammen mit der starken Präsenz an Büschelmücken Larven indiziert einen niedrigen Fraßdruck durch Fische in diesem See.

-82-

Ein deutliches Aufkommen des Rädertiers *Kellicottia longispina* wurde bereits in Vorjahren beobachtet, ist aber derzeit nicht zu deuten. Da *Kellicottia longispina* auch im Bültsee und Ihlsee stark vertreten ist, indiziert diese Art evtl. elektrolyt- und nährstoffarme Gewässer.

Auffällig sind unter den Daphnien Morphen mit konvexer Stirn, die am ehesten nach FLÖSSNER (2000) in Richtung *Daphnia hyalina* weisen, in der älteren Literatur als *Daphne longispina* var. *hyalina* forma *rotundifrons* beschrieben wurden. Die saisonale Abfolge des Zooplanktons folgt nicht bzw. nur bedingt dem PEG Modell. Auf das Filtrierer-Maximum im Juni erfolgt ein Zusammenbruch der Filtriererpopulation, ein Herbstpeak bzw. Wiederanstieg der Zooplanktonmasse bleibt aus.

Als Eutrophierungszeiger ist allenfalls *Cyclops vicinus* zu nennen, der bis Anfang Juli einen bedeutenden Teil der Copepodenzönose stellt. Weitere Eutrophierungszeiger sind nicht vorhanden.

Der wenig günstige Umsatz von Phytoplankton- in Zooplanktonmasse in der wärmeren Jahreszeit ist sicherlich auf die für einen mesotrophen See ungünstige Futtersituation in dieser Zeit (schlecht fressbare Cyanobakterien - *Anabaena*; siehe oben) zurückzuführen. Vermutlich bewirkt auch die Präsenz der Makrophyten durch eine indirekte Bereitstellung von Alternativnahrung eine Herabsetzung der **Z/P** Relation (siehe auch Bültsee). Die Einschätzung, dass es sich beim Garrensee um einen See mit geringem Nährstoffgehalt handelt, stimmt mit der Einschätzung von SPETH (1999) überein.

5.10 Großer Binnensee

Seetyp (Plkt.) VQ [km² 106m³] See-Fläche [km²] Tiefe – mittel [m] Tiefe – max [m] th. Verweilzein 88.1 (11.2) 16,1 4,78 1,9 3,0 0,2 TP 1m [mg/l] TN 1m [mg/l] SiO₂-Si 1m [mg/l] Sichttiefe [m] Chl a [μg/l] Z _{integr.} BV[mm³/l] Z _{integr.} 0,111 1,69 8,44 0,7 61,1 9,8 ZooplTG (mg/l) Z/P (TG/TG) (Riedmüller et al 2013) Trophie-Index (Riedmüller et al 2013) PSI ohne DiProf (PhyoSee 5.1) PSI ohne DiProf (PhyoSee 5.1) 2007 2013	Sı	tammdaten, lim	nochemische un	d –biologische Mit	telwerte 2013 + I	ndices
TP $_{1m}$ [mg/l] TN $_{1m}$ [mg/l] SiO $_2$ -Si $_{1m}$ [mg/l] Sichttiefe [m] Chl a [µg/l] Z_{integr} BV[mm³/l] Z_{integr} 0,111 1,69 8,44 0,7 61,1 9,8 ZooplTG (mg/l) C/6 (MIREDMÜLLER et al 2013) für 2007 Z013 für 2013 2007 Z013 Für 2013 2007 Z013 Tiefenkarte (links unten) und oberirdisches Einzugsgebiet (rechts unten)		1		T C	I	th. Verweilzeit [a]
0,111 1,69 8,44 0,7 61,1 9,8 ZooplTG (mg/l) Z/P (TG/TG) (%/d) (RIEDMÜLLER et al Juli-Aug. Trophie-Index (RIEDMÜLLER et al 2013) für 2013 PSI ohne DiProf (PhyoSee 5.1) (PhyoSee 5.1) 2007 PSI ohne DiProf (PhyoSee 5.1) 2007 1,15 104 4,0-p1 3,9-p1 4,1-unbefriedig. 3,9-unbefried Tiefenkarte (links unten) und oberirdisches Einzugsgebiet (rechts unten)	88.1 (11.2)	16,1	4,78	1,9	3,0	0,2
ZooplTG (mg/l) Z/P (TG/TG) Trophie-Index (RIEDMÜLLER et al 2013) für 2007 2013 für 2013 2007 2013 1,15 104 4,0-p1 3,9-p1 4,1-unbefriedig. 3,9-unbefried Tiefenkarte (links unten) und oberirdisches Einzugsgebiet (rechts unten)	TP _{lm} [mg/l]	TN _{1m} [mg/l]	SiO ₂ -Si _{1m} [mg/l]	Sichttiefe [m]	Chl a [µg/l] Z _{integr.}	BV[mm³/l] Z _{integr.}
(mg/l) (% / d) (RIEDMÜLLER et al 2013) für 2007 (RIEDMÜLLER et al 2013) für 2013 (PhyoSee 5.1) (PhyoSee 5.1) 1,15 104 4,0 - p1 3,9 - p1 4,1 - unbefriedig. 3,9 - unbefried Tiefenkarte (links unten) und oberirdisches Einzugsgebiet (rechts unten)	0,111	1,69	8,44	0,7	61,1	9,8
Tiefenkarte (links unten) und oberirdisches Einzugsgebiet (rechts unten)		(% / d)	(RIEDMÜLLER et al	(RIEDMÜLLER et al	(PhyoSee 5.1)	
	1,15	104	4,0 - p1	3,9 – p1	4,1 – unbefriedig.	3,9 – unbefriedig.
Lagran Lagran						Note Your Logende

-83-

Der bei Hohwacht im Kreis Plön liegende Große Binnensee ist ein elektrolytreicher Binnensee der Ostseeküste, Strandsee, Sondertyp 88.1), der sehr flach (< 3 m mittlere Tiefe), aber in der Fläche groß ist (478 ha). Er ist der größte Strandsee Schleswig-Holsteins und weist ein nach Südwesten sich erstreckendes großes Einzugsgebiet auf, das hauptsächlich landwirtschaftlich geprägt ist. Der Hauptzufluss ist die Kossau, die gereinigtes Abwasser u.a. der Stadt Lütjenburg (30.000 EW) in den See bringt (LANU 2006). Der See ist polytroph.

Bis 1,5 m Tiefe, also auf einer großen Seefläche, sind Unterwasserpflanzen stark vertreten, v.a. *Potamogeton*-Arten und Characeen, insbesondere die gefährdete *Chara aspera* (LANU 2006).

5.10.1 Ergebnisse Phytoplankton

Share 1994

Zwischen April und Oktober 2013 wurden 7 tiefenintegrierte Mischproben (jeweils 0-2 m) entnommen. Der insgesamt nährstoffreiche See weist stark schwankende Biomassen auf, mit

im Mittel deutlich erhöhten Werten (Jahresmittel: 61,1 µg I⁻¹ Chl a und 9,8 mm³ I⁻¹ Biovolumen; Tab. 5. Es dominieren bei hoher Artenvielfalt zahlreiche Algengruppen, in erster Linie Bacillariophyceen und Cyanobakterien, phasenweise auch Cryptophyceen, Chrysophyceen und Chlorophyceen (Abb. 19). Im Rahmen der EU-WRRL wurde der See mittels der Qualitätskomponente (QK) Phytoplankton mit **unbefriedigend** bewertet (PSI ohne DI-PROF; genaueres zum PSI siehe Kap. 5.3).

Ende April bis Ende Mai wurden die höchsten Biovolumina des Jahres gefunden, mit Werten bis über 25 mm³ l⁻¹ Biovolumen. Es dominieren zum einen pennale und centrale Bacillariophyceen, wobei *Diatoma tenuis* (56 % Anteil an der Gesamtbiomasse im April) und *Cyclotella balatonis* (7 % im April und 12 % Anteil im Mai) hervorstechen. Als zweite Algengruppe treten Cyanobakterien mit fädigen Formen stark hervor. Hauptgattung ist *Aphanizomenon* mit der Art *A. gracile* (64 % Anteil im Mai); die zweite Art ist *Pseudanabaena limnetica* (14 % Anteil im Mai).

Im Juni und Juli gab es nach der Frühjahrsblüte einen Einbruch der Phytoplanktonpopulation, wobei nur noch Gehalte um 5 mm³ l⁻¹ Biovolumen und tiefer gefunden wurden. Nun waren klein-bis großwüchsige Cryptophyceen (Juni) und verschiedene Chrysophyceen (Juli) vorherrschend. Bei den Goldalgen dominieren *Dinobryon sociale* (27 % Anteil) und *Dinobryon divergens* (20 % Anteil).

Zum Ende des Sommers (August und September) nahm die Algenmasse wieder zu, jedoch unterschiedlich beim Chl.a-Gehalt (starke Zunahme) und Biovolumen (schwache Zunahme, Abb. 15). Ein Grund dafür in diesem sehr artenreichen Gewässer mit vielen kleinzelligen Arten ist die mögliche Unterschätzung vor allem des Picoplanktons, das in der Lugolprobe anders als in Lebendproben nur schwer zu erfassen ist. Der Anteil des Chlorophyll-a am Phytoplankton-Biovolumen betrug im August bis Oktober 1,4 - 1,5 % und war deutlich höher als in der ersten Jahreshälfte. Im August war deutlich *Anabaena flos-aquae* aus der Gruppe der Cyanobakterien die Hauptart (41 % Anteil). Daneben trat *Aphanocapsa* mit 9 % Anteil an der Gesamtbiomasse stärker hervor. Im September waren beide Arten immer noch vertreten, *Anabaena flos-aquae* nun nur noch mit 11 % Anteil. Bei zunehmender Durchmischung trat nun die großvolumige fädige *Aulacoseira granulata* (Bacillariophyceen) stärker hervor (20 % Anteil), und ebenso andere fädige Blaualgen (*Aphanizomenon gracile* und *Pseudanabaena*, mit je 4 % Anteil).

Im Oktober bei abnehmender Biomasse trat erstmalig die fädige Blaualge *Planktothrix agardhii* verstärkt auf (16 % Anteil). *Fragilaria*-Arten (zusammen 14 %) und *Aulacoseira granulata* (7%) aus der Gruppe der Kieselalgen und die Blaualge *Aphanocapsa* (15 % Anteil) vervollständigen das Bild.

Die gefundenen Kieselalgen in der gesondert entnommenen Profundalprobe vom 16.9. 2013 sind zum Teil auch benthisch lebende Arten, bzw. benthisch und planktisch lebende Kieselalgen, bedingt durch die sehr geringe Wassertiefe. Am häufigsten wurden *Fragilaria brevistriata var. brevistriata* (19 % Anteil) und *Cyclostephanos delicatus* (17 %) gefunden. Die letztgenannte Art war auch Bestandteil der gefundenen Kieselalgen des Freiwassers. Weitere Arten waren *Amphora pediculus* (10 %), *Nitzschia fonticola var. fonticola* (9 %), *Aulacoseira gra-*

nulata (7 %) und Fragilaria construens f. venter (6 % Anteil) (weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF siehe Kap. 5.2).

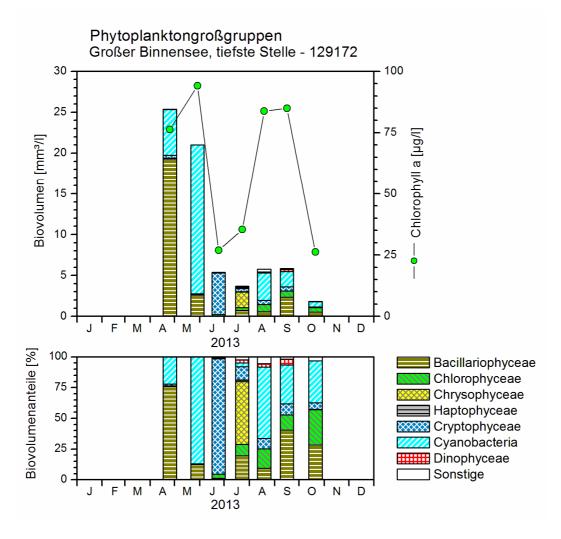


Abb. 19: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Gr. Binnensees 2013. Oben: Abolute Biovolumina. Unten: Prozentuale Anteile.

5.10.2 Ergebnisse Zooplankton

Im Großen Binnensee wurden 2013 insgesamt 34 Taxa des Metazooplanktons registriert (Rotatorien 22, Cladoceren 5, Copopoden 7). Damit weist das Gewässer im Vergleich zu den 2013 untersuchten Seen eine durchschnittliche Artenvielfalt auf. Besonders bemerkenswert ist das Vorkommen der Raubcladocere Leptodora kindtii (des Glaskrebses) in mittleren Individuendichten insbesondere im Juli. Das Urnentierchen Tintinnopsis gehört zu den 6 insgesamt differenzierten Protozoentaxa; messbare Individuendichten wurden jedoch nur im August registriert. Auf Grund der geringen Wassertiefe des Großen Binnensees und der damit verbundenen Polymixie wurden regelmäßig Schalenamöben in den Proben registriert, die eigentlich eine substratgebundene Lebensweise haben. Im Einzelnen handelt es sich um verschiedene Arten des Urglastierchens (Arcella) sowie um die Stachelamöbe (Centropyxis).

Die dominierenden Taxa bei den **Rotatorien** sind im zeitigen Frühjahr *Keratella quadrata*, *Keratella cochlearis* und *Polyarthra dolichoptera* (letztere Flossenrädertiere). Die genannten Arten haben im Mai einen Anteil an der Rotatorienzönose von mehr als 90 % und bilden Individuendichten von 2400 Ind. L⁻¹. Während *Keratella cochlearis* auch in der var. *tecta* ganzjährig im Rotatorienplankton vorhanden ist und überwiegend auch aspektbestimmend auftritt, konnten *Keratella quadrata* und *Polyarthra dolichoptera* spätestens im Sommer nicht mehr nachgewiesen werden. Verschiedene *Polyarthra*-Arten ("Flossenrädertiere") bilden zusammen mit *Keratella cochlearis* im Herbst ein zweites Rotatorienmaximum mit geringeren Individuendichten im Vergleich zum Frühjahr (2000 Ind. L⁻¹). Der Sommeraspekt mit insgesamt geringen Individuendichten an Rotatorien wird vor allem von *Synchaeta pectinata* bestimmt. Bemerkenswert ist in diesem Zeitraum das Vorkommen von Rotatorien, die eine Nahrungsspezialisierung aufweisen (*Trichocerca pusilla*, *Trichocerca similis*).

Das **Cladocerenplankton** des Großen Binnensees ist mit 5 nachgewiesenen Taxa vergleichsweise unterdurchschnittlich entwickelt. Die Lebensgemeinschaft wird vor allem im Frühjahr und im Herbst von kleinen Arten, wie *Bosmina longirostris* und *Chydorus sphaericus* dominiert, die insbesondere im Mai in sehr hohen Individuendichten vorkommen. In den Sommermonaten treten dagegen Daphnien (*D. galeata*) aspektbestimmend auf. Die Raubcladocere *Leptodora kindtii* konnte von Juni bis September nachgewiesen werden; deren höchste Bestandsdichte wurde im Juli festgestellt.

Die Artendiversität der **Ruderfußkrebse** ist mit insgesamt 7 registrierten Taxa als unterdurchschnittlich zu bezeichnen. Das Bild der Copepodengemeinschaft wird im Frühjahr von großen Arten (*Cyclops vicinus* und *Eudiaptomus gracilis*) geprägt, darüber hinaus sind neben *Cyclops kolensis* weitere cyclopoide Copepoden in geringen Individuendichten im Plankton vorhanden. Ab Juli entwickelt sich *Acanthocyclops robustus* zur aspektbestimmenden bzw. eudominanten Art; vom August bis zum Oktober konnten weitere Copepoden nur vereinzelt registriert werden.

Planktische **Protozoen** sind im Großen Binnensee stark unterrepräsentiert bzw. konnten nur in vergleichsweise geringen Besiedelungsdichten festgestellt werden.

Die mittlere **Biomasse** des Zooplanktons liegt im Großen Binnensee bei ca. 1152 μg L⁻¹. Nach TGL (1982) hat das Gewässer somit polytrophen Charakter. Maximal wurden fast 3000 μg L⁻¹ erreicht. Starke Massenbildner sind im zeitigen Frühjahr die cyclopoiden Copepoden und Rotatorien. Von Mai bis Juli sowie im Oktober bestimmen die herbivoren Cladoceren das Bild der Zoozönose, Im Spätsommer wird die Planktonbiomasse fast ausschließlich von cyclopoiden Ruderfußkrebsen gebildet (Abb. 20).

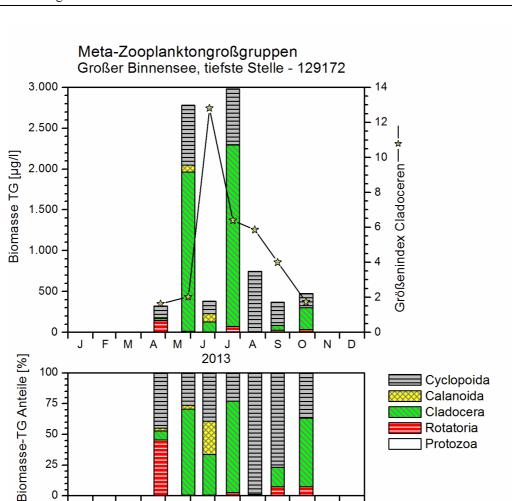


Abb. 20: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Gr. Binnensee 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

Nahrungsnetz

Für das Verhältnis von Zooplanktonmasse zu Phytoplanktonmasse wurden für einen Flachsee sehr hohe Werte ermittelt: Das Z/P-Verhältnis beträgt im Durchschnitt 46,74 % d⁻¹, für die Sommermonate wurden sogar > als 100 % d⁻¹ ermittelt. Der Umsatz von Phytoplankton- in Zooplanktonbiomasse ist somit vergleichsweise hoch, was für ein aus Sicht des Zooplanktons gut verwertbares Phytoplankton spricht.

Der Cladoceren-Größenindex (GIC) liegt im Mittel bei 5 μg Ind. 1, und erreicht im Juni einen Maximalwert von fast 13 μg Ind. 1. Im Hochsommer wurden 6 μg Ind. 1 ermittelt, was auf einen lediglich moderaten Fraßdruck durch Fische hinweist (Abb. 20). Dafür spricht auch die Anwesenheit der Raubcladocere *Leptodora kindtii*, mit Individuendichten von immerhin 19 Ind. L. 1 im August.

5.10.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Der Große Binnsensee, sehr flach (Typ 11.2) und als größter Strandsee (Sondertyp) in Schleswig-Holstein sehr windexponiert, weist im Mittel hohe Planktongehalte auf, wobei Bacillariophyceen und Cyanobakterien die wichtigen Biomassebildner sind. Der sehr artenreiche See wurde 2013 anhand der QK Phytoplankton **unbefriedigend** bewertet. Diese Einstufung ist vor dem Hintergrund hoher ganzjahriger Algenblüten, oft durch Cyanobakterien, plausibel, auch wenn im August und September 2013 "nur" hohe Chl.a-Gehalte und nicht im gleich hohen Maße Biovolumina ermittelt wurden.

-88-

Altdaten liegen von 2007 (KASTEN & MICHELS 2008) und 2002 vor (SPETH & SPETH 2002). Bei den Mittelwerten der Summenparameter zeigen sich beim Vergleich 2007 und 2013 außer beim Biovolumen kaum Unterschiede (Tab. 18, Abb. 21).

Im Jahr 2007 wurden die ersten Proben bereits Anfang März genommen, 2013 erst Ende April. Im Gr. Binnensee dominierten 2007 wie 2013 im Frühjahr Bacillariophyceen, im Sommer dagegen war die Blaualgenblüte 2007 ausgeprägter als 2013 (Abb. 21).

Im Frühjahr bis Juni 2007 dominierten bei den Blaualgen vor allem *Limnothrix redekei* und bei den Bacillariophyceen pennale (*Fragilaria* spp.) und centrische Formen (*Cyclostephanos dubius, Stephanodiscus minutulus* und *St. neoastraea*), während 2013 bei den Blaualgen *Aphanizomenon gracile* und *Pseudanabaena limnetica* und bei den Kieselagen *Diatoma tenuis* und *Cyclotella balatonis* hervortraten. Ab Juli bis in den Herbst 2007 waren *Planktothrix agardhii* und *Woronichinia naegiliana* in wechselnden Dominanzen sehr stark vertreten. Beide Arten traten 2013 ebenso auf, jedoch in deutlich geringerer Dichte. Stattdessen waren 2013 im Sommer eher nostocale Formen, v.a. *Anabena flos-aquae*, und picoplanktische Blaualgen vorherrschend.

Zusammenfassend deuten die Dominanzen in beiden Jahren auf eine geringere Trophie 2013 als 2007, was sich jedoch nicht im Phytoplankton-Taxon-Seen-Index (PTSI) des PSI zeigt. Der PTSI hat 2013 gegenüber 2007 eher noch zugenommen $(4,1 \rightarrow 4,6)$. Grund dafür ist zum einen, daß die 2013 sehr dominante *Anabaena flos-aquae* keine Indikatorart für ungeschichtete Seen ist und zum anderen subdominante Arten relativ zu ihrem Biovolumen stärker gewichtet werden.

Die Dominanz von solchen Arten im Jahr 2013, die gegenüber 2007 eher auf eine geringere Trophie verweisen, wird auch dadurch untermauert, daß 2013 der Phosphor phasenweise im Sommer (Juni+Juli) deutlich unter 0,1 mg/l TP lag, während 2007 im gesamten Sommer Werte deutlich > 0,1 mg/l TP ermittelt wurden.

Im Jahr 2002 waren die Verhältnisse wieder anders. Hauptart im Sommer war *Microcystis aeruginosa* aus der Gruppe der Cyanobakterien (genaueres siehe KASTEN & MICHELS 2008).

Insgesamt zeigen die Werte für den PSI und die Trophie eine leichte Verbesserung von 2007 bis 2013, ebenso eine leichte Verbesserung von 2002 bis 2007 (PSI 2002: 4,2 und Trophie-Index 2002: 4,2). Auch wenn besonders in sehr flachen Seen interannuell wetterbedingte

Schwankungen auftreten können, so ist doch im letzten Jahrzehnt ein leichter Trend zu einer geringeren Trophie zu vermuten, auch wenn das Niveau weiterhin hoch ist.

-89-

Tab. 18: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Gr. Binnensee.- Erläuterungen: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

Gr. Binnensee (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2007	0,6	0,114	66,5	16,0	4,0	4,1
2013	0,7	0,111	61,1	9,8	3,9	3,9

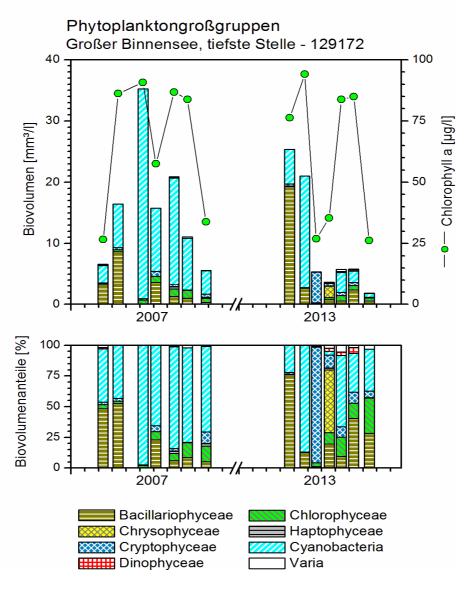
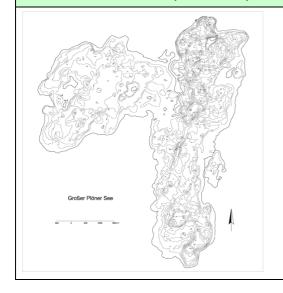
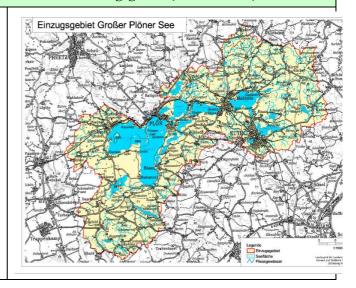


Abb. 21: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Gr. Binnensees 2007 und 2013. Oben: Abolute Biovolumina. Unten: Prozentuale Anteile.

Zooplankton

Die Zooplanktongemeinschaft des Großen Binnensees zeigt eine durchschnittliche Diversität rein limnischer Taxa, salzliebende bzw. salztolerante Taxa kommen wie schon bei KASTEN & MICHELS (2008) beschrieben, trotz geografischer Nähe zur Ostsee nicht vor. Bemerkenswert auf Grund ihrer Nahrungsspezialisierung sind verschiedene Arten der Rädertiergattung *Trichocerca* (*T. similis* und *T. pusilla*).


-90-


Die für das Metazooplankton ermittelten Biomassen indizieren ein polytrophes Niveau, was im Prinzip auch mit dem vorhandenen Artenspektrum sowie der Größenverteilung der Zooplankter korrespondiert. Insbesondere das Cladocerenplankton wird über weite Strecken von kleinen Arten wie Bosmina longirostris und Chydorus sphaericus dominiert. Letzterer gilt darüber hinaus als Eutrophierungszeiger. Rotatorien sind fast ganzjährig in sehr hohen Individuendichten vorhanden und bilden im zeitigen Frühjahr mit den cyclopoiden Copepoden einen Hauptbestandteil der Biomasse. Im Vergleich zu den 2007 durchgeführten Untersuchungen ist die Biomasse des Zooplanktons von durchschnittlich 0,6 mg L.-1 auf fast das Doppelte gestiegen (1,2 mg L.⁻¹). Dem gegenüber konnte jedoch keine entsprechende Zunahme des Phytoplanktons beobachtet werden, vielmehr hat sich dessen Zusammensetzung gegenüber den 2007 durchgeführten Untersuchungen deutlich verändert. Wurde bei KASTEN & MICHELS (2008) noch eine ganzjährige Dominanz von Cyanobakterien konstatiert, war deren Anteil am Phytoplanktonbiovolumen 2013 nur im Mai und im August größer als 50%. Des Weiteren sind neben Kieselalgen auch Chlorophyceae und Cryptophyceae in vergleichsweise hohen Abundanzen vorhanden. Diese Algenklassen können vom herbivoren Zooplankton gut verwertet werden, was zu einem Anstieg der Zooplanktonbiomasse geführt hat. Der Umsatz von Phytoplanktonmasse in Zooplanktonmasse bewegt sich aufgrund der günstigen Nahrungssituation auf einem – für einen polytrophen Flachsee - hohen Niveau. Mit einem durchschnittlichen Z / P Verhältnis von 47 % d⁻¹ (Median 29 % d⁻¹) und hochsommerlichen Werten von > 100 (Juli) bzw. 29 % d⁻¹ (August) sind das für einen polytrophen Flachsee eher untypische Werte.

Eine Übereinstimmung der Zooplanktonentwicklung mit dem PEG-Modell für eutrophe Seen ist nicht erkennbar. Die herbivoren Cladoceren bilden Ende Mai mit Individuendichten von fast 1000 Ind. L.⁻¹ ein deutliches Maximum aus. Im weiteren jahreszeitlichen Verlauf übernehmen dann cyclopoide Copepoden den Hauptbestandteil der Biomasse, ab August dann sogar in einer fast reinen "Monokultur" von *Acanthocyclops robustus*. Für den **Cladoceren-Größen-Index** wurden eher durchschnittliche Werte ermittelt, was für einen moderaten Fraßdruck durch planktivore Fische spricht.

5.11 Großer Plöner See

Stammdaten, limnochemische und -biologische Mittelwerte 2013 + Indices										
Seetyp (Plkt.)	VQ [km² 10 ⁶ m ⁻³]	Fläche [km²]	Tiefe – mittel [m]	Tiefe – max [m]	th. Verweilzeit [a]					
13	1,0	28,40	13,5	56,2	3,2					
TP _{lm} [mg/l]	TN _{1m} [mg/l]	SiO ₂ -Si _{lm} [mg/l]	Sichttiefe [m]	Chl a [µg/l] Z _{integr.}	BV [mm³/l] Z _{integr.}					
0,038	0,64	0,92	2,4	13,7	2,9					
ZooplTG (mg/l)	Z/P (TG/TG) (% / d) Juli-Aug.	Trophie-Index (RIEDMÜLLER et al 2013) für 2012	Trophie-Index (RIEDMÜLLER et al 2013) für 2013	PSI ohne DiProf (PhyoSee 5.1) 2012	PSI ohne DiProf (PhyoSee 5.1) 2013					
0,08 32 2,8 - e1 2,7 - e1 3,2 - mäßig 3,5 - mäßig										
1	Tiefenkarte (lin	ks unten) und ob	erirdisches Einzug	gsgebiet (rechts u	nten)					

Von der Entstehung her ist der Gr. Plöner See Teil des Restes eines ehemals großen Schwentinesees, der das ganze Schwentinetal bedeckte und dessen Seespiegel etwa 36 bis 39 m ü. NN lag. Der heutige Gr. Plöner See ist ein typisches Zungenbecken. Neben der Schwentine, die den Großteil des Einzugsgebietes (50 % Anteil) entwässert, weist die Tensfelder Au, die ins Südbecken des Sees entwässert, ein weiteres großes Einzugsgebiet auf (18 %) (LANU 2001a). Aufgrund des großen Seevolumens dieses tiefsten und in der Fläche größten Binnensees in Schleswig-Holstein ist das Einzugsgebiet in Relation zum Seevolumen klein (Volumenquotient VQ = Einzugsgebiet/Seevolumen = 1,0 [km² 10⁶m⁻³]).

Der stabil geschichtete Große Plöner See wurde wie in den Vorjahren im tiefen Südbecken untersucht. Der See ist im Sommer bis in etwa 8 - 10 m durchmischt. Somit sind große Teile des Sees, der eine mittlere Tiefe von 13,5 m aufweist, polymiktisch. Der Gr. Plöner See wird seit 1998 ca. 8 - 9 mal im Jahr im Freiwasser limnochemisch- und -biologisch (Phyto- und Zooplankton) untersucht. Der See ist meso- bis schwach eutroph. Im Rahmen der EU-WRRL wurde der See mittels mittels der Qualitätskomponente (QK) Phytoplankton mit mäßig bewertet (PSI ohne DiPROF, genaueres zum PSI im Überblick siehe dazu Kap. 5.3).

5.11.1 Ergebnisse Phytoplankton

Zwischen April und November 2013 wurden 8 tiefenintegrierte Mischproben (0-5 bis 0-10 m) entnommen. Der Große Plöner See weist im Mittel leicht erhöhte Chlorophyll a- Gehalte und Biovolumina auf, mit einem sehr ausgeprägten Frühjahrspeak der Bacillariophyceen. Im Sommer und Frühherbst dominieren bei geringen Biomassen vor allem Dinophyceen und Cryptophyceen (Jahresmittel: 13,7 µg l⁻¹ Chl a und 2,9 mm³ l⁻¹ Biovolumen; Tab. 5, Abb. 22). Im Rahmen der EU-WRRL wurde der See mittels der Qualitätskomponente (QK) Phytoplankton mit **mäßig** bewertet (PSI ohne DI-PROF; genaueres zum PSI siehe Kap. 5.3).

-92-

Während der Frühjahrsvollzirkulation Mitte April sind wie in den Vorjahren große centrische Bacillariophyceen die Hauptvertreter. In beiden Monaten waren deutlich *Stephanodiscus neoastraea* (55 % Anteil an der Gesamtbiomasse) und *Aulacoseira islandica* (38 % Anteil), eine relativ seltene großvolumige centrische Kieselalge, die Hauptarten. Andere centrische Formen wie *Cyclotella balatonis* und *Stephanodiscus alpinus* traten subdominant auf.

Im Mai und Juni nach dem Zusammenbruch der Kieselalgenblüte dominierten beim Übergang zum Sommer neben den "Restbeständen" der Bacillariophyceen (v.a. *Cyclotella balatonis*) in erster Linie Cryptophyceen (*Cryptomonas erosa/ovata/phaseolus* und *Rhodomonas lacustrius*) und Haptophyceen mit dem einzigen Vertreter *Chrysochromulina parva* (31 und 18 % Anteil).

Danach entwickelte sich das Sommerplankton und prägte sich von Juli bis September aus. Es dominierten in erster Linie verschiedene großvolumige mobile Dinophyceen. Hauptart in allen drei Monaten war die Art *Peridiniopsis polonicum* (24 – 40 % Anteil), die alljährlich im Pr. Plöner See gehäuft auftritt. Die in der Form sperrige und ebenfalls großvolumige *Ceratium hirundinella* trat in etwas geringerer Dichte auf (2 - 18 % Anteil). Die Haptophyceen mit der Art *Chrysochromulina parva*, die klein und schnellwachsend ist und bereits im Frühjahrsplankton stark vertreten war, waren auch im Sommerplankton im August (17 % Anteil) und September (12 %) häufig. Daneben traten aus der Gruppe der Cyanobakterien (Blaualgen) zahlreiche Nostocales-Arten (*Anabaena* und *Aphanizomenon*) und im September auch zunehmend Oscillatoriales hervor, jedoch jeweils in geringer Dichte. Bacillariophyceen waren vor allem im Juli häufiger, mit der Hauptart *Fragilaria crotonensis* (17 % Anteil).

Im Herbst (Oktober, November) dominierten bei zunehmender euphotischer Zone und abnehmenden Biomassen ähnlich wie im Frühjahr Cryptophyceen und Bacillariophyceen. Bei letztgenannter Gruppe traten zum Teil andere Arten hervor, wie *Aulacoseira granulata* (Oktober: 26 % Anteil). Zum Teil waren es die gleichen Arten wie im April, jedoch in geringeren Anteilen (*Aulacoseira islandica* mit 16 % Anteil im November und *Stephanodiscus neo-astraea* 6 % Anteil im November).

Die gesondert entnommene Profundalprobe vom 4.9. 2013 zeigte Ähnlichkeiten mit den häufigen Arten des Freiwassers. In der Schlammprobe dominierte wie im Vorjahr deutlich *Stephanodiscus minutulus* (29 % Anteil an der Gesamtschalenzahl), daneben *Aulacoseira islandica* (15 % Anteil). Desweiteren waren *Stephanodiscus alpinus* (13 %), *Stephanodiscus neoastraea* (12 %) und *Fragilaria crotonensis* (11 %) häufiger anzutreffen. Weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF findet sich in Kap. 5.2.

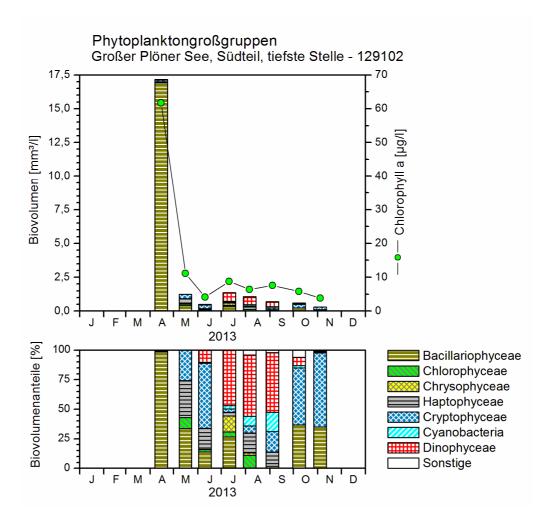


Abb. 22: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Großen Plöner Sees 2013. <u>Oben:</u> Absolute Biovolumina. <u>Unten:</u> Prozentuale Anteile.

5.11.2 Ergebnisse Zooplankton

Der Gr. Plöner See gehört mit 44 nachgewiesenen Metazooplankton Taxa zu den artenreichen Seen. Insgesamt wurden 28 Rotatorien, 8 Cladoceren und 8 Copepoden Taxa erfasst. Larven der Dreikantmuschel, Raubcladoceren sowie Büschelmücken-Larven konnten ebenfalls nachgewiesen werden. An Protozoen wurden 4 Taxa differenziert, wobei große Ciliaten, Schalenamöben und Urnentierchen (*Tintinnopsis*) zahlenmäßig eine Rolle spielen.

Die **Rotatorien** werden im zeitigen Frühjahr (April) durch "Flossenrädertiere" (*Polyarthra dolichoptera*) und kleinere Synchaeten (Sychaeten aus der *Synchaeta lakowitziana, oblonga* Gruppe) dominiert (zusammen ca. 53 % der Rädertierzönose). Noch häufig ist das kalt stenotherme Taxon *Conochilus natans*. Im Juni kommen neben den "Flossenrädertieren" *Keratella* Arten (*Keratella cochlearis, Keratella quadtata*) stark auf (zusammen ca. 63 % der Rädertierzönose) bei gleichzeitig deutlicher Präsenz des koloniebildenden Rädertiers *Conochilus unicornis*. In den Hochsommer Monaten ist das Rädertierplankton artenreich zusammengesetzt, wobei die bereits genannten häufigen Keratellen und "Flossenrädertiere" wiederum zahlenmäßig dominieren. Mit *Pompholyx sulcata* und vereinzelt auftretenden *Brachionus* Arten

(z.B. *Brachionus diversicornis*) wurden auch Eutrophierungszeiger nachgewiesen. Nahrungsspezialisten (*Ascomorpha*-, *Trichocerca*-Arten sowie *Asplanchna priodonta*) sind präsent aber zahlenmäßig unbedeutend. Mit durchschnittlich 156,6 und maximal 667 Ind. L⁻¹ weist der Gr. Plöner See eher mittlere (bis niedrige) Rotatorien-Abundanzen auf.

Die **Cladoceren** werden praktisch während des gesamten Untersuchungszeitraums von kleinen Rüsselkrebsen (überwiegend *B. coregoni coregoni und B. longirostris*) geprägt. In den Monaten Juni, Juli und wieder gegen Ende des Untersuchungszeitraumes (Oktober, November) kommen Daphnien (überwiegend *Daphnia cucullata*) stärker auf und stellen in den genannten Monaten ca. zwischen 30 und 60 % der Cladocerenzönose. Weitere allerdings seltene, bzw. vereinzelt auftretende Taxa sind das Linsenkrebschen *Chydorus sphaericus*, Ceriodaphnien sowie Raubcladoceren (der Glaskrebs *Leptodora kindtii*). Die mittlere Abundanz der Cladoceren beträgt im Gr. Plöner See 9,5 Ind. L⁻¹; das Maximum liegt bei 38 Ind. L⁻¹. Auch bei der Cladoceren-Abundanz liegt der Gr. Plöner See im "mittleren" mesotrophen Bereich innerhalb der untersuchten Seen.

Bei den **Copepoden** ist im Gr. Plöner See das syntope und sympatrische Auftreten von *Eudiaptomus gracilis* und *E. graciloides* erwähnenswert. Im Frühjahr ist *Cyclops kolensis* aspektbestimmend (bis ca. 88 % der Copepodenzönose). Im Juni treten kleine Arten (*Mesocyclops leuckarti* und *Thermocyclops oithonoides*) hervor. Ab August bis zum Ende des Untersuchungszeitraumes ist *Thermocyclops oithonoides* das aspektbestimmende Taxon; *Mesocyclops leuckarti*, der im Juni noch häufiger ist als *Themocyclops oithonoides* tritt anteilig deutlich zurück. Die mittlere Abundanz der calanoiden Copepoden liegt im bei 1,1 die maximale Abundanz bei 5 Ind. L⁻¹; die mittlere Abundanz der cyclopoiden Copepoden beträgt 12,7, die maximale Abundanz 30 Ind. L⁻¹ und gruppiert den See – wie bei der Rotatorien- und Cladoceren Abundanz – in den mittleren bis niedrigen oligo- bis mesotrophen Bereich. Zu beachten bei dieser Einschätzung ist allerdings die Probenahme (vgl. Absatz Biomasse und Diskussion).

Die **Protozoen** sind im Gr. Plöner See im Hochsommer mit Abundanzen von > 25 Ind. L⁻¹ deutlich vertreten.

Hinsichtlich der mittleren und maximalen **Biomasse** des Zooplanktons liegt der Gr. Plöner See mit durchschnittlich nur 76,4 μg L⁻¹ und maximal nur 269 μg L⁻¹ (Abb. 23) nach TGL (1982) relativ stabil im oligotrophen Bereich. In wie weit hier die Probenahme (Vertikalzug aus 30 m Tiefe) die Biomassen (und auch Abundanzen) beeinflusst bleibt zu diskutieren. Vermutlich führt der Netzzug durch tiefe, wenig planktonreiche Schichten zu einer Unterschätzung der Zooplanktonmasse und Zooplanktonabundanz. Würde man die Biomasse auf ca. 10 m Probenahme-Tiefe (in etwa das Epilimnion, vgl. TGL 1982) beziehen, so ergäbe sich eine mittlere Biomasse von ca. 230 μg L⁻¹ was einen mesotrophen Status indizieren würde. Vergleichsweise starke Massenbildner sind im Frühjahr, sowie im August und September die cyclopoiden Copepoden. Im Juli und gegen Ende des Untersuchungszeitraumes bestimmen die "klassischen" Filtrierer (Cladoceren) das Bild. Die Rotatorien erreichen im Mittel 11 % der Gesamtbiomasse. Ihre maximalen Massenanteile bleiben < 20 %.

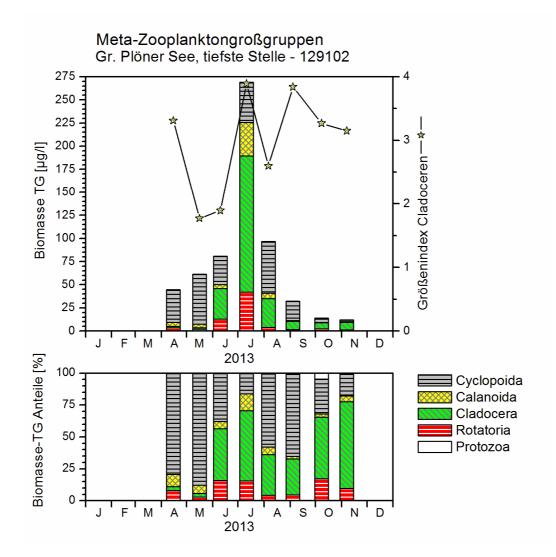


Abb. 23: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Gr. Plöner See 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

Nahrungsnetz

Der Gr. Plöner See weist von Mitte Juni bis Mitte Juli ein halbwegs günstiges **Z/P** Verhältnis von 35 bis 44 % d⁻¹ auf. Die gut fressbaren Cryptophyceen nehmen in diesem Zeitraum ab, was auf das Grazing der gut vertretenen Daphnien (insbesondere in der ersten Julihälfte) zurückzuführen ist. In der zweiten Jahreshälfte erfolgt ein kontinuierlicher Rückgang der Z/P Relation von ca. 20 % d⁻¹ im August bis auf 5 bis 8 % d⁻¹ in den Monaten Oktober und November; das gut fressbare Phytoplankton (Cryptophyceen) nimmt wieder zu. Die Jahresgänge der Phytoplankton- und Zooplanktonmasse verlaufen von Juni an bis zum Ende des Untersuchungszeitraums halbwegs parallel. Der Frühjahrspeak des Phytoplanktons, der überwiegend von sehr großvolumigen Bacillariophyceen (*Aulacoseira*) gebildet wird, hat allerdings keinen Anstieg der Zooplanktonmasse zur Folge.

Der Cladoceren-Größenindex (**GIC**) beträgt im Mittel ca. 3,0 μg Ind. maximal werden 3,9 μg Ind. erreicht (Abb. 23).

5.11.3 Diskussion Phyto- und Zooplankton

Phytoplankton

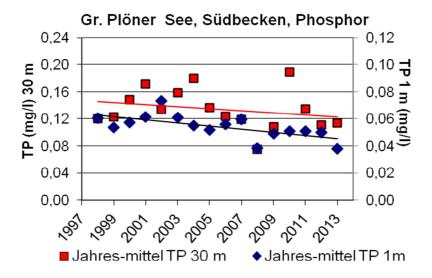
Der meist schwach eutrophe Große Plöner See wird seit 1998 regelmäßig limnochemisch und planktologisch untersucht. Noch in den 70er Jahren des letzten Jahrhunderts war der See deutlich eutropher, mit ausgeprägter *Microcystis*-Blüte. OHLE beschrieb den See in den 60er und 70er Jahren als stark eutroph. In den 70er Jahren begann dann sukzessive der Rückgang der Nährstofffracht, die in den See gelangte (LANU 2001).

In den letzten 16 Jahren ist der großflächige, windexponierte See vor allem von großvolumigen Bacillariophyceen (Frühjahr und Herbst) und im Sommer von Cryptophyceen und großvolumigen Dinophyceen geprägt (siehe unten Altdatenvergleich). Eine Besonderheit ist dabei das dominante Auftreten der relativ selten auftretenden Kieselalge *Aulacoseira islandica*. Der deutliche Frühjahrs-Kieselalgenpeak verweist auf erhöhte Nährstoffgehalte während der Phase der Durchmischung. Insgesamt zeigt der stabil geschichtete und großvolumige Große Plöner See erwartungsgemäß relativ geringe interanuelle Schwankungen im Nährstoff- und Planktongehalt (siehe Tabelle unten), wenn sich auch einzelne Algengruppen von Jahr zu Jahr unterschiedlich ausprägen (Tab. 19, Abb. 24).

Bei Betrachtung der Jahresmittelwerte gibt es seit 1998 beim Gesamtphosphor aus 1 m und 30 m Tiefe einen leichten aber erkennbaren Abwärtstrend, wenn auch deutlich weniger stark als beim ähnlich lang untersuchten Dobersdorfer See. Bei der Biomasse und den Indices (PSI, Trophieindex) ist ein Trend im Gr. Plöner See nicht eindeutig zu erkennen (Abb. 38). Beim Phytoplankton und Chl.a überlagern sich methodische Veränderungen:

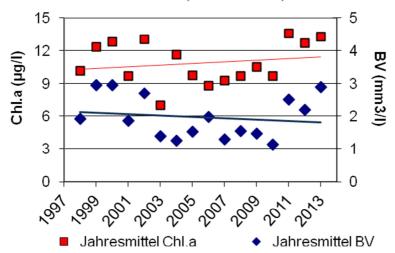
- Die Probenahmetechnik hat sich beim Chl.a und Phytoplankton ab Mitte 2005 geändert. Seit Juni 2005 wurden die Planktonproben aus der euphotischen bzw. epilimnischen Zone als integrierte Probe entnommen, oft aus 0 10 m Tiefe, vorher aus 1 m Tiefe. Dagegen wurde und wird Phosphor immer aus 1 m Tiefe entnommen.
- Das Phytoplankton wurde 1998 bis 2003 von anderen Bearbeitern analysiert als 2004 bis 2013, ausgenommen 2007, wo noch ein dritter Berabeiter analysierte. Dies ist sichtbar am Anteil des Chl.a am Biovolumen. Der Wert lag im Zeitraum 1998 2004 im Mittel bei ca. 0,6 % und im Zeitraum 2005 2012 bei ca. 0,8 %. Dies bedeutet im Mittel je Chl.a-Einheit etwa 25 % geringere Biovolumina im Zeitraum 2005-2012 gegenüber 1998-2004. Bei den vorliegenden Daten beider Zeiträume ist es nur möglich, die Zellvolumina zu vergleichen. Zum Teil sind Taxavolumina wegen verschiedener Größenklassen nicht vergleichbar. Bei einigen Arten im direkten Vergleich war erkennbar, daß höhere, z.T. deutlich höhere Zellvolumina berechnet wurden.

In den letzten 3 Jahren 2011-13 ist ein deutlich erkennbarer Anstieg des Phyoplanktongehaltes erkennbar, sowohl beim Biovolumen als auch Chl.a-Gehalt, hervorgeufen durch ausgeprägte Frühjahrs-Kieselalgenblüten. Die ökologische Einstufung des Sees anhand der QK Phytoplankton ist für diesen Zeitraum mit 3,2 – 3,5 deutlich im "mäßigen" Bereich. Diese Einstufung des Sees ist gerechtfertigt, da der See trotz des relativ zum Seevolumen kleinen Einzugsgebietes insbesondere im Frühjahr deutlich erhöhte Nährstoff- und Planktongehalte aufweist (Tab. 19).


Zahlreiche Altdaten und genauere Beschreibungen zum Phytoplankton liegen alljährlich aus den letzten 15 Jahren vor, am aktuellsten von ARP 2005b, ARP & DENEKE 2006 und 2007, KASTEN & MICHELS 2008, ARP & MAIER 2009 und ARP, KASTEN & MAIER 2010 und 2011, ARP & MAIER 2012 und ARP, MAIER & MICHELS 2013. Danach zeigen sich in den zurückliegenden anderthalb Jahrzehnten seit 1998 im Jahresmittel kleinere Veränderungen in der Biomasse (s.u.). Aulacoseira islandica als besonderes Taxon dieses Sees ist weiterhin eine der Hauptarten der Bacillariophyceen im Großen Plöner See. Weitere wichtige Arten sind bei den Dinophyceen Ceratium hirundinella und Peridiniopsis polonicum und bei den Bacillariophyceen Stephanodiscus neoastraea und Stephanodiscus binderanus, Fragilaria crotonensis und Aulacoseira granulata. Weiteres zu den wichtigen Taxa, die alljährlich dominant auftreten, findet sich bei u.a. ARP & DENEKE (2006).

-97-

Alljährliche Unterschiede finden sich v.a. in der Ausprägung des Frühjahrs-Kieselalgenpeaks, wie oben erwähnt, mit der Folge unterschiedlicher PSI-Werte. Dies ist in erster Linie darauf zurückzuführen, dass dieser Anstieg oft nur kurzzeitig vorhanden ist (Kieselalgen wachsen schnell und sinken während einer Schichtungsphase schnell wieder ab) und die Probenahme mit monatlichem Rhythmus an diese kurzfristigen starken Änderungen der Biomasse nicht angepasst ist. Im Jahr 2010 wurde das Frühjahr "nur" im April beprobt, 2011 ab Mitte März direkt nach dem Eisbruch und 2012 Anfang März nach einem milden Winter. Im Jahr 2013 war die Probenahme relativ kurz nach dem sehr kalten März Mitte April. Betrachtet man den Zeitraum 1998 – 2012, so sind in den Jahren, in denen ein starker Frühjahrspeak ermittelt wurde (1999, 2000, 2006, 2008, 2011, 2012, 2013), hohe PSI-Werte errechnet worden (Abb. 39). Der PSI kann in solchen Jahren bis zu einer halben Klasse höher ausfallen als in Jahren, in denen kein hoher Peak erfasst wird. Betrachtet man z.B. 2011 nur den Zeitraum ab April und lässt den März weg, lag der PSI mit 2,7 eine halbe Klasse tiefer. Das Jahr 2012 war eines der wenigen Jahre, wo der Frühjahrspeak im April höher als im März war. Im Jahr 2013 war erneut ein sehr hoher Peak mit *Aulacoseira islandica* im April.


Tab. 19: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den **Gr. Plöner See, Südteil.**- Erläuterungen: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

Gr. Plöner See (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2009	3,6	0,047	10,6	1,5	2,6	2,9
2010	3,5	0,051	9,7	1,1	2,5	2,8
2011	2,9	0,051	13,6	2,5	2,8	3,2
2012	2,7	0,050	12,7	2,2	2,8	3,2
2013	2,4	0,038	13,7	2,9	2,7	3,5

-98-

Gr. Plöner See, Südbecken, Biomasse

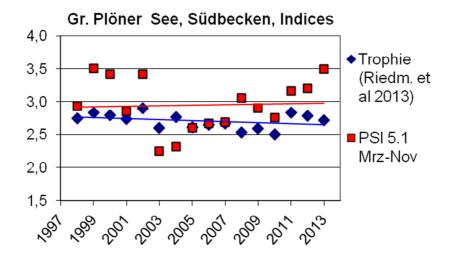


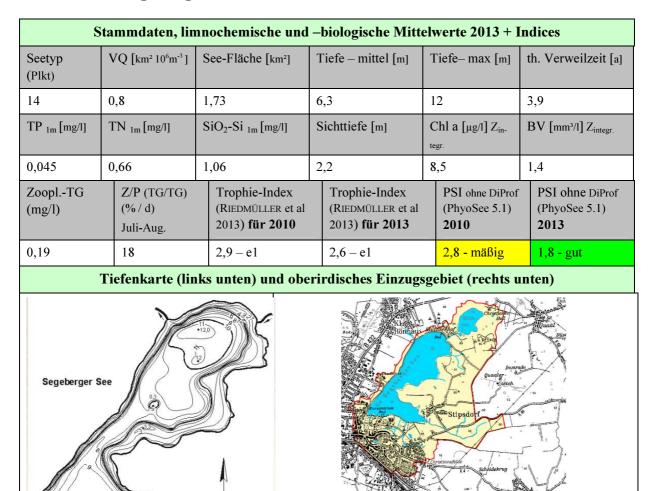
Abb. 24: Jahresmittel verschiedener Parameter und Indices des Phytoplanktons und der Trophie im Gr. Plöner See 1998 – 2013 (Phosphor immer aus 1m Tiefe, Chl.a und Phytopl. bis Mai 2005 aus 1 m, danach integriert aus der euphotischen Zone, in der Regel aus 0 – 5 bis maximal 0 - 10 m.

Zooplankton

Der Große Plöner See wurde zusammen mit dem Dobersdorfer See hinsichtlich des Zooplanktons häufig untersucht. Untersuchungen liegen z.B. aus den Jahren 1998 bis 2012 bereits vor (SPETH 1999, 2003; SPIEKER ET AL. 2004; ARP 2005B, 2005; ARP & DENEKE 2006, 2007; KASTEN & MICHELS 2008; ARP & MAIER 2009; ARP, KASTEN & MAIER 2010, 2011; ARP & MAIER 2012; ARP, MAIER & MICHELS 2013). Hinsichtlich der mittleren Zooplanktonmasse ergibt sich im aktuellen Untersuchungsjahr (wie schon in den Vorjahren 2011 und 2012) die Einstufung in die Kategorie oligotroph. Zu beachten hierbei ist allerdings das große Probenvolumen (Netzzug von 30 m bis zur Oberfläche und damit durch vermutlich Plankton arme Schichten, siehe oben). Bezieht man die Biomasse auf die oberen 10 m, so ergibt sich ein Mittelwert von 228 μg L⁻¹, was den See nach TGL (1982) deutlich in den oberen mesotrophen Bereich rückt.

Ein Vergleich der mittleren Biomassen des Zooplanktons über die Untersuchungsjahre lässt zwar aufgrund des immer noch kurzen Zeitraums keine endgültigen Aussagen zu. Im Trend ist aber von 2008 bis 2013 (in den letzten 6 Jahren) eine Abnahme der mittleren Zooplanktonmasse von gut 0,2 auf knapp 0,08 mg L $^{-1}$ zu verzeichnen (Tab. 20). Insbesondere die Biomassen im Frühjahr fallen in den letzten Jahren niedrig aus. Ursache hierfür ist sicherlich mit die Situation beim Phytoplankton; z.B. war 2011 bis 2013 deutlich der Hauptteil der Kieselalgenbiomasse im März/April größer 30 μ m und damit schlecht fressbar für das herbivore Cladocerenplankton.

Die Daten der verschiedenen Untersuchungsjahre sind vergleichbar, da immer gleich gearbeitet bzw. beprobt wurde. Analog zu den Biomassen zeigt sich auch ein Rückgang des mittleren GIC von 2008 (5,6 μg Ind. ¹) zum Jahr 2013 hin (3,0 μg Ind ¹). Effektive Grazer sind "dünn gesät" und allenfalls mit *Daphnia cucullata* (sowie Hybriddaphnien und *Daphnia galeata*) im Juli und Juni deutlich vertreten.


Trotz seiner Einstufung nach der Biomasse als oligotroph weist der See Eutrophierungszeiger auf. Negativ zu werten ist die Präsenz von Ciliaten. Eine Übereinstimmung mit dem PEG-Modell ist im aktuellen Untersuchungsjahr nicht zu sehen. Die **Z/P** Relation (in %/d) spricht für einen schlechten Umsatz von Phytoplankton- in Zooplanktonmasse in der zweiten Jahreshälfte (siehe Steckbrief). Halbwegs günstige Umsatzraten ergeben sich nur für Juni / Juli. Auffällig im aktuellen Jahr ist, dass der Frühjahrpeak des Phytoplanktons (wie schon im Vorjahr) keinen Anstieg der Zooplanktonentwicklung bzw. -Masse nach sich zieht (Bacillariophyceen vermutlich zu großvolumig für Filtrierer; siehe oben). Insgesamt zeigt das durchschnittliche Z/P über die Vegetationsperiode zumindest in den letzten 3 Jahren einen Trend nach unten.

Die Abnahme des Cladoceren Größenindex (GIC) von 2007 an deutet auf ungünstiger werdende Futter-Bedingungen und/oder zunehmende Fisch-Prädation hin, (Tab. 20).

Tab. 20: Vergleich wichtiger Parameter (Jahresmittel) des Zooplanktons im Vergleich 2013 mit früheren Jahren für den **Gr. Plöner See.**- <u>Erläuterungen</u>: GIC = Größenindex Cladoceren. Z/P = Zoopl.- zu Phytoplanktonbiomasse auf Trockengewichts-Basis.

Bearbeiter	Deneke	Deneke	Michels	Maier	Maier	Maier	Maier	Maier	Maier
Gr. Plöner See	2005	2006	2007	2008	2009	2010	2011	2012	2013
BIOMASSE (µg L-1)	120	110	530	227	173	157	75	87	76
% Rotatorien	24	8	4	18	16	5	8	9	11
%Cladoceren	26	31	60	35	37	70	40	25	39
% Calanoide	8	30	nD	18	11	8	11	11	9
% Cyclopoide	43	32	ND	30	36	18	41	55	40
GIC (µg Ind1)	3,8	3,2	16	5,6	4,3	4,2	3,9	3,1	3,0
Z/P Veg.P (%/d)	64	122		96	31	61	23	17	17
Z/P Somm.(%/d)	11	16		38	29	40	10	25	32

5.12 Großer Segeberger See

100 200 300 400 m

Der Große Segeberger See ist ein mittelgroßer und –tiefer See, der abhängig vom Wetter in einzelnen Jahren zu großen Teilen geschichtet (dimiktisch) und in anderen Jahren eher durchmischt (polymiktisch) ist. Der See liegt an der Stadtgrenze von Bad Segeberg. Er hat unbedeutende Zuflüsse und weist daher ein kleines oberirdisches Einzugsgebiet auf (Typ 13). Der natürliche Ablauf am Nordufer ist die Rönnau (LAWAKÜ 1995). Der See ist schwach eutroph.

Der Gr. Segeberger See liegt im südöstlichen Jungmoränengebiet Schleswig-Holsteins und könnte als Rinnensee ein wassererfüllter Rest glazialer Schmelzwassserrinnen sein (LAWAKÜ 1995).

5.12.1 Ergebnisse Phytoplankton

Zwischen April und Oktober 2013 wurden 7 tiefenintegrierte Mischproben (jeweils 0-6 m) entnommen. Der Große Segeberger See weist im Mittel leicht erhöhte Chlorophyll a- Gehalte und Biovolumina auf, mit geringen jahreszeitlichen Schwankungen (Jahresmittel: 8,5 μg Γ¹ Chl a und 1,4 mm³ l⁻¹ Biovolumen, Tab. 5). In der ersten Jahreshälfte dominieren vor allem die kleinzelligen schnell wachsenden Haptophyceen und in geringerer Dichte Dinophyceen, Cryptophyceen und Bacillariophceen. In der zweiten Jahreshälfte sind Dinophyceen und Cryptophyceen die bestandsbildenden Gruppen (Abb. 25). Im Rahmen der EU-WRRL wurde der See mittels mittels der Qualitätskomponente (QK) Phytoplankton mit **gut** bewertet (PSI ohne DI-PROF; genaueres zum PSI Kap. 5.3).

Im April und Mai war bei ausbleibender Kieselalgenblüte *Chrysochromulina parva* (52 und 76 % Anteil an der Gesamtbiomasse) als einzige Art der Algengruppe Haptophyceen deutlich im Phytoplankton dominierend. *Chrysochromulina parva* ist ein sehr kleiner und schnell wachsender Flagellat. Daneben traten kleinvolumige Dinophyceen und bei den Bacillariophyceen die Arten *Stephanodiscus neoastraea* (4 und 10 % Anteil) und *Stephanodiscus alpinus* (1 und 5 % Anteil) hervor.

Auch im Juni und Juli war *Chrysochromulina parva* (jeweils 37 % Anteil) noch bestandsbildend. Daneben waren nun großvolumige Arten im Vordergrund. Bei den Bacillariophyceen waren dies im Juni die koloniebildenden Arten *Asterionella formosa* (14 % Anteil) und *Fragilaria crotonensis* (6 % Anteil). Bei den Dinophyceen traten besonders im Juli *Peridiniopsis polonicum* (8 % Anteil) und *Ceratium hirundinella* (9 %) hervor. Der Juli war der einzige Monat, wo Cyanobakterien etwas gehäufter auftraten, mit der nostocalen Art *Anabaena macrospora* (6 % Anteil) und der dünnfädigen oscillarorialen Art *Pseudanabaena limnetica* (5 % Anteil).

Von August bis Oktober waren neben den Dinophyceen vor allem Cryptophyceen (*Rhodomonas lacustris* und die Sammelgruppe *Cryptomonas erosa/ovata/phaseolus* stark vertreten. Bei den Dinophyceen nahm *Ceratium hirundinella* stetig zu und wies im Oktober einen Anteil an der Gesamtbiomasse von 54 % auf.

In der gesondert entnommenen Profundalprobe vom 3.9. 2013 wurde die kleinwüchsige Art *Stephanodiscus minutulus* am häufigsten gefunden (56 % aller gezählten Schalen). Diese Art

wurde auch in den Freiwasserproben gehäuft angetroffen, war jedoch in der Biomasse zu vernachlässigen. Weitere wichtige Kieselalgen-Schalen des Profundalschlamms waren *Stephanodiscus neoastraea* (14 % Anteil), *Asterionella formosa* (5 % Anteil) und *Stephanodiscus alpinus* (4 %), alles Arten, die im Freiwasser phasenweise biomassebildend waren. Weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF findet sich in Kap. 5.2.

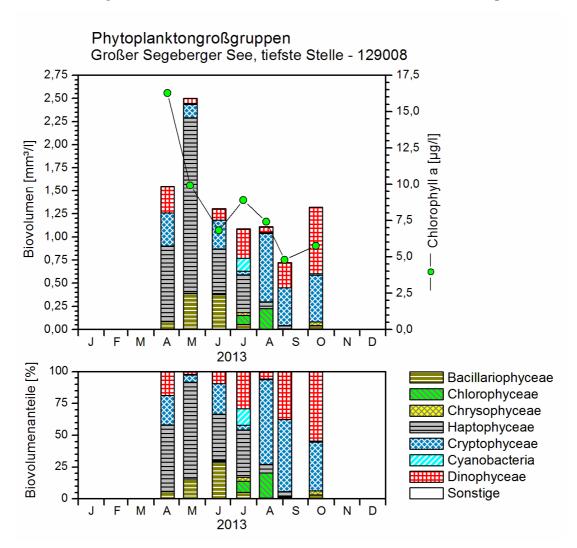


Abb. 25: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Großen Segeberger Sees 2013. Oben: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

5.12.2 Ergebnisse Zooplankton

Im Gr. Segeberger See wurden 36 Metazooplankton Taxa nachgewiesen, was den See allenfalls zu den moderat bis wenig artenreichen Seen einstuft. Insgesamt wurden 22 Rotatorien, 8 Cladoceren und 6 Copepoden Taxa erfasst. Larven der Dreikantmuschel und Raubcladoceren (der Glaskrebs *Leptodora kindtii*) waren in den Proben vorhanden, nicht jedoch Büschelmücken-Larven. An Protozoen wurden 6 Taxa differenziert.

Die **Rotatorien** werden im April durch *Kellicottia longispina* dominiert, die zu dieser Zeit immerhin ca. 35 % der Rädertierzönose stellt. Noch häufig sind Synchaeten (*Synchaeta pec*-

tinata und kleinere Vertreter aus der *S. lakowitziana oblonga* Gruppe) sowie *Keratella cochlearis*. Im Mai und später im Juli werden "Flossenrädertiere" (*Polyarthra vulgaris und P. dolichoptera*) anteilig häufig, die etwas über 50% der Rädertierzönose stellen. Generell häufig und gegen Ende des Untersuchungszeitraumes dominant ist das allgemein häufige Taxon *Keratella cochlearis*. Taxonomische Besonderheiten waren nicht vorhanden. Eutrophierungszeiger, wie *Pompholyx sulcata* sind schwach (etwas häufiger allenfalls im Juni) vertreten. Mit durchschnittlich 316,4 und maximal 842 Ind. L⁻¹ weist der Gr. Segeberger See mittlere bis hohe Rotatorien-Abundanzen auf.

-103-

Das **Cladocerenplankton** wird in den Frühjahrsmonaten (bis einschließlich Juni) durch *Daphnia cucullata* und Hybriddaphnien (*Daphnia x krausi*) bestimmt. Im Hochsommer (Juli, August) kommen Rüsselkrebse (*Bosmina coregoni* und *Bosmina longirostris*) auf, während Daphnien zurücktreten. Im September und Oktober dominieren wieder die Daphnien. Die mittlere Abundanz der Cladoceren beträgt im Gr. Segeberger See 12,1 Ind. L⁻¹; das Maximum liegt bei 37 Ind. L⁻¹ was den See eher in den mittleren (mesotrophen) Bereich einstuft.

Das **Copepodenplankton** ist im Gr. Segeberger See bereits im Frühjahr artenreich zusammengesetzt. Neben 3 Cyclops Arten (*Cyclops abyssorum*, *Cyclops kolensis*, *Cyclops vicinus*) ist der calanoide Copepode *Eudiaptomus gracilis* stark vertreten und selbst Sommerarten, wie *Mesocyclops leuckarti* und *Thermocyclops oithonoides* sind bereits als C5 Copepodide (aufsteigende Diapausierer) ebenfalls relativ stark präsent. Im Sommer und Herbst ist *Thermocyclops oithonoides* das aspektbestimmende Taxon, wobei *Mesocyclops leuckarti* auch noch gut vertreten ist. Die mittlere Abundanz der calanoiden Copepoden liegt im bei 3,19, ihre maximale Abundanz bei 12 Ind. L⁻¹, die mittlere Abundanz der cyclopoiden Copepoden beträgt 37,7, die maximale Abundanz 120 Ind. L⁻¹ und gruppiert den See in den eutrophen Bereich.

Die **Protozoen** (vagile Ciliaten) erreichen im Gr. Segeberger See im Juni immerhin Abundanzen von > 70 Ind. L⁻¹.

Hinsichtlich der mittleren und maximalen **Biomasse** des Zooplanktons liegt der Gr. Segeberger See mit durchschnittlich 188,4 µg L⁻¹ und maximal 382 µg L⁻¹ (Abb. 26) nach TGL (1982) im mesotrophen Bereich. Vergleichsweise starke Massenbildner sind im Frühjahr die cyclopoiden Copepoden und gegen Ende des Untersuchungszeitraumes die Cladoceren. Auffällig sind die hohen Anteile der Rotatorien und auch der Protozoen an der Zooplankton Masse bei gleichzeitig niedriger Gesamtmasse im Juli. Im Mittel stellen die Rotatorien allerdings nur 8 % der Gesamtbiomasse.

Nahrungsnetz

Im Gr. Segeberger See ist das Z/P Verhältnis im Juni (und damit der Fraßdruck auf das Phytoplankton durch das Zooplankton) mit 65 % d⁻¹ hoch. Im Folgemonat fällt die Z/P Relation auf ca. 10 % d⁻¹ ab, steigt aber anschließend zum Höchstwert hin im September (71 % d⁻¹) wieder an. Eine grobe Übereinstimmung zwischen dem Jahresgang der Phytoplankton- und des Zooplanktonmasse allerdings mit einer zeitlichen Verzögerung der Zooplankton Peaks gegenüber den Phytoplankton Peaks ist in diesem See festzustellen. Ein Hochsommer Z/P von immerhin 18 % d⁻¹ weist auf einen allenfalls noch passablen Umsatz von Phytoplankton in

Juli 2014

Zooplanktonmasse hin, da schlecht fressbare Dinophyceen zumindest im Juli deutlich vertreten sind.

Der Cladoceren-Größenindex (GIC) beträgt im Mittel 7,4 μg Ind. Ind. Index damit über der Masse einer 1 mm langen Daphnie und ist als hoch zu bezeichnen. Maximal werden 17,3 μg Ind. (April) erreicht (Abb. 26).

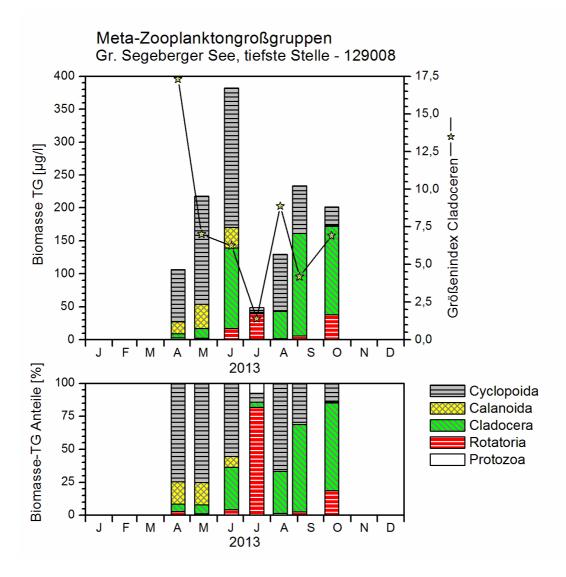


Abb. 26: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Gr. Segeberger See 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

5.12.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Das Phytoplankton des schwach polymiktischen Gr. Segeberger Sees war 2013 nur leicht erhöht, mit geringen jahreszeitlichen Schwankungen und meist kleinen, schnell wachsenden

Flagellaten. Es wurde keine sommerliche Algenblüte beobachtet. Der schwach eutrophe See wurde anhand der QK Phytoplankton mit **gut** bewertet. Diese Einstufung ist gerechtfertigt.

-105-

Der Gr. Segeberger See wurde bereits im Jahr 2004 (ARP 2005a) sowie im Jahr 2010 von ARP, KASTEN & MAIER (2011) untersucht, wobei 2004 der gleiche Bearbeiter wie 2013 (Arp) und 2010 eine andere Bearbeiterin (Kasten) die Untersuchungen durchführte. Im Jahr 2004 wurden im April und Mai keine Proben entnommen, insgesamt nur 5 (März und Juni – Sept.).

Der Altdatenvergleich zeigt seit 2004 insgesamt stetig abnehmende Werte für den Planktongehalt und einen deutlich abnehmenden Sprung beim Phosphor von 2010 zu 2013. In der Summe hat sich der PSI von **mäßig** zu **gut** verbessert (Tab. 21, Abb. 27).

Im Detail ist folgendes beim Vergleich der Jahre erkennbar: Während in den Sommern 2004 (sehr ausgeprägt) und 2010 (abgeschwächt) eine Dinophyceen-Blüte (*Ceratium*) mit erhöhten Gehalten ermittelt wurde, gab es diese Blüte 2013 nicht. Im Frühjahr waren die Unterschiede ebenso deutlich. In den Jahren 2004 und 2013 wurde keine Frühjahrsblüte und 2010 eine sehr ausgeprägte Kieselalgenblüte gefunden, was auch durch das unterschiedliche und insgesamt nicht enge Probenahmeraster bedingt sein kann. Die Daten zum Temperatur-Vertikalprofil und zum Phosphorgehalt aus 1 m Tiefe in den 3 genannten Jahren zeigen folgendes:

- Während 2004 der See während des Sommers nur phasenweise schwach geschichtet war, waren 2010 und 2013 die sommerlichen Schichtungsphasen länger und der Grad der Temperatur-Schichtung stärker, mit der Folge einer stärkeren Abgrenzung des oberen vom unteren Wasserkörpers im Zeitraum Mai bis August. In dieser Zeit waren die Phosphorgehalte im Epilimnion 2010 (0,03 0,05 mg/l TP in 1 m) und 2013 (0,025 -0,05 mg/l TP in 1 m) geringer als 2004 (0,04 0,08 mg/l TP).
- Die Phosphorgehalte zeigten im Frühjahr (März/April) während der Vollzirkulation beim Vergleich der 3 Jahre unterschiedliche Werte. 2004 (0,04-0,065 mg/l TP) und 2013 (0,03 mg/l TP) lagen die Werte tiefer als 2010 (0,08 mg/l TP). Hier ist somit kein eindeutiger Trend zu erkennen.

Insgesamt zeigen die frühjährlichen und sommerlichen Vergleiche keinen eindeutigen Trend von 2004 bis 2013. Unterschiedliche Wetterbedingungen (Übergang Winter-Frühjahr und Frühjahr-Sommer) können ein wichtige Ursache für die Unterschiede in der Trophie und im Plankton sein.

Tab. 21: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den **Gr. Segebeger See.**- Erläuterungen: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor. *. 2004 nur 5 Proben im März und Jun-Sep.

Gr. Segeberger See (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (μg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2004 (*)	1,9	0,063	26,4	8,8	3,2	2,9
2010	2,8	0,061	15,3	4,0	2,9	2,8
2013	2,2	0,045	8,5	1,4	2,6	1,8

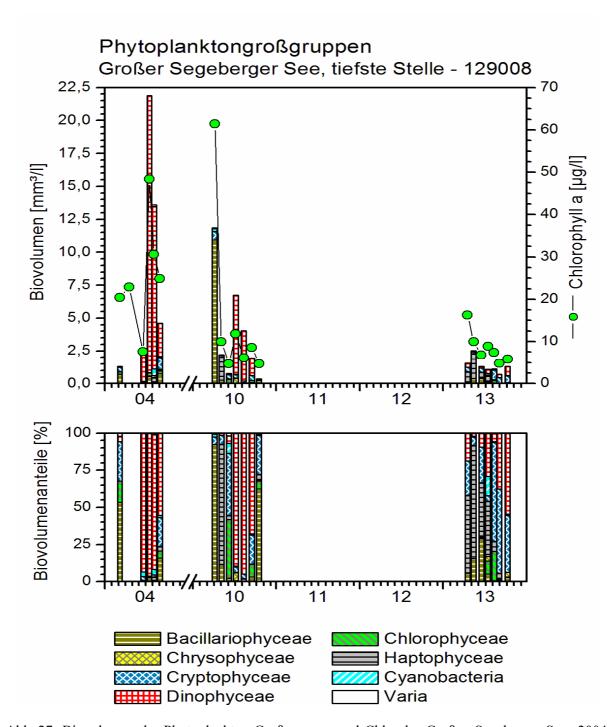


Abb. 27: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Großen Segeberger Sees 2004, 2010 und 2013. <u>Oben</u>: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

Zooplankton

Der Gr. Segeberger See wurde bereits im Jahr 2004 von PEER MARTIN (ARP 2005) sowie im Jahr 2010 von ARP, KASTEN & MAIER (2011) untersucht. In der Untersuchung aus dem Jahr 2004 wurden große Ciliaten für das zeitige Frühjahr als wichtige Taxa genannt. Auch im aktuellen Untersuchungsjahr sind vagile Ciliaten deutlich vertreten, allerdings im Sommer. Trotzdem hinterlässt das Zooplanktonspektrum im aktuellen Jahr einen günstigen Eindruck, da große Filtrierer bis auf die Sommermonate (Juli, August) stark vertreten sind.

Die Biomasse des Zooplanktons stuft den See im aktuellen Jahr nach TGL (1982) in den mittleren mesotrophen Bereich ein. Eine ähnliche Einstufung (allerdings oberer mesotropher Bereich; 281 vs. 188 μg L⁻¹) ergab sich auch für das Untersuchungsjahr 2010. Die schwache Präsenz von Eutrophierungszeigern (allenfalls *Pompholyx sulcata* bei den Rädertieren) im aktuellen Jahr bestätigt den günstigen Eindruck. Eutrophierungszeiger, wie das Linsenkrebschen bei den Cladoceren, das im Jahr 2004 noch in nennenswerter Zahl nachgewiesen wurde (ARP 2005), waren aktuell in den Proben nicht vorhanden. Der saisonale Ablauf erfolgt in etwa nach dem PEG Modell für eutrophe Seen.

Hinsichtlich des **GIC** liegt der See mit im Mittel 7,1 µg Ind⁻¹ eher im obereren Bereich, was für einen allenfalls moderaten bis niedrigen Fraßdruck durch Fische spricht. Der hohe GIC im Jahr 2010 bestätigt diesen Eindruck. Ein niedriger GIC (< 2 µg Ind.⁻¹) wurde im aktuellen Jahr nur im Juli gemessen. Der Umsatz von Phytoplankton in Zooplanktonmasse (**Z/P**) ist im aktuellen Jahr etwas ungünstiger als im Jahr 2010, was aber auf Schwankungen von Jahr zu Jahr oder etwa das grobe Probenahme-Raster zurückzuführen ist. Eine "gewisse" Kopplung der Jahresgänge von Phytoplanktonmasse und Zooplanktonmasse ist vorhanden. Allenfalls im Vergleich zum Jahr 2010 negativ zu nennen sind die etwas niedrigen Anteile der großen Filtrierer (der Cladoceren und calanoiden Copepoden) was vermutlich auf Schwankungen von Jahr zu Jahr zurückzuführen sein dürfte.

5.13 Ihlsee

Stammdaten, limnochemische und -biologische Mittelwerte 2013 + Indices										
Seetyp (Plkt.)	VQ [km² 10 ⁶ m ⁻³]	See-Fläche [km²]	Tiefe – mittel [m]	Tiefe – max [m]	th. Verweilzeit [a]					
88.3 (13)	0,3	0,29	7,4	21,5	9,7					
TP _{lm} [mg/l]	TN _{1m} [mg/l]	SiO ₂ -Si _{lm} [mg/l]	Sichttiefe [m]	Chl a [µg/l] Z _{integr.}	BV [mm³/l] Z _{integr.}					
0,011	0,53	0,08	3,5	5,4	0,5					
ZooplTG (mg/l)	Z/P (TG/TG) (% / d) Juli-Aug.	Trophie-Index (RIEDMÜLLER et al 2013) für 2008	Trophie-Index (RIEDMÜLLER et al 2013) für 2013	PSI ohne DiProf (PhyoSee 5.1) 2008	PSI ohne DiProf (PhyoSee 5.1) 2013					
0,06	18	1,5 – m1	1,7 – m1	(1,1) – sehr gut	(1,4) – sehr gut					
7	Tiefenkarte (lin	ks unten) und ob	erirdisches Einzug	gsgebiet (rechts u	nten)					
ihisee	Tiefenkarte (links unten) und oberirdisches Einzugsgebiet (rechts unten)									

-108-

Der in Bad Segeberg liegende Ihlsee ist in Relation zu seiner kleinen Fläche tief (max. 21,5 m) und zudem kalkarm (Sondertyp 88.3). Die Werte für Calcium liegen bei ca. 15 mg/l und somit in etwa im gleichen Bereich wie im Bültsee und Blankensee bei Lübeck. Der See ist durch eiszeitliche Sande während der Weichseleiszeit entstanden. Durch starke Auswaschung der Sande waren diese nährstoffarm. Dieser Umstand und das sehr kleine Einzugsgebiet sind Ursache für die geringen Nährstoffeinträge in den stabil geschichteten See. Im Jahr 2013 war der Ihlsee mesotroph. Der See ist seit 1950 Naturschutzgebiet (LANU 1996) und zudem FFH-Gebiet (STUHR 2007).

Der ursprünglich oligotrophe See mit theoretisch sehr hoher Verweilzeit (ca. 10 Jahre) weist eine reichhaltige Unterwasservegetation bis in etwa 6 m Tiefe auf, mit für Schleswig-Holstein außergewöhnlich hohen Anteilen von gefährdeten Arten. Wie im Bültsee finden sich größere Bestände der gefährdeten Arten *Litorella uniflora* und *Myriophyllum alterniflorum*. Zudem wurde vermehrt u.a. die bedrohte Wasserlobelie (*Lobelia dortmanna*) und in geringerer Dichte das Brachsenkraut (*Isoetes lacustris*) aufgelistet (STUHR 2007).

5.13.1 Ergebnisse Phytoplankton

Zwischen Anfang Mai und Oktober 2013 wurden 7 tiefenintegrierte Mischproben (0-7 bis 0-10 m) entnommen. Der Ihlsee weist bei insgesamt sehr geringen Nährstoffgehalten entspre-

chend geringe Chlorophyll a- Gehalte und Biovolumina mit relativ geringen jahreszeitlichen Schwankungen auf, wobei die Planktongehalte nie über 10 µg l⁻¹ Chl a und 1 mm³ l⁻¹ Biovolumen steigen. Es dominieren zahlreiche Algengruppen, in erster Linie Chrysophyceen und im Sommer Dinophyceen und Cyanobakterien. Bacillariophyceen treten aufgrund der geringen Silikatmengen nur phasenweise in erhöhten Anteilen auf (Abb. 28). Das Jahresmittel im Ihlsee beträgt 5,4 µg l⁻¹ Chl a und 0,5 mm³ l⁻¹ Biovolumen (Tab. 5). Im Rahmen der EU-WRRL wurde der See mittels mittels der Qualitätskomponente (QK) Phytoplankton mit **sehr gut** bewertet (PSI ohne DI-PROF; genaueres zum PSI siehe Kap. 5.3).

Juli 2014

In der ersten Jahreshälfte bis Anfang Juli waren Chrysophyceen (Goldalgen), die auf eine geringe Trophie verweisen, die bestandsbildende Algengruppe, mit stetig zunehmender Biomasse. Die Hauptarten war zum einen *Uroglena* mit Anteilen an der Gesamtbiomasse von 15 % im Mai und 52 % im Juni, zum anderen *Dinobryon divergens* mit Anteilen von 15 % im Juni und 50 % Anfang Juli. Neben den Goldalgen traten Anfang Mai bei den Bacillariophyceen benthische Aufwuchsalgen hervor, *Cymatopleura elliptica* (25 % Anteil) und unbestimmte Pennales (20 % Anteil). Bei den Dinophyceen war Anfang Juli in erster Linie *Ceratium hirundinella* (20 % Anteil) stark vertreten.

In der zweiten Jahreshälfte waren ab Ende Juli neben den Dinophyceen mit dem Hauptvertreter Ceratium hirundinella zum einen verschiedenste Cyanobakterien häufig. Hier traten verstärkt u.a. hervor: Ende Juli Anabaena flos-aquae (19 % Anteil) und Anabaena lemmermannii (6 %), im August Planktothrix agardhii (12 % Anteil), im August und September Microcystis aeruginosa (18 und 10 % Anteil) und von Juli bis September mit 3 – 6 % Anteil die kleinzellige koloniebildende Radiocystis geminata. Zum anderen war bei den Bacillariophyceen von Ende Juli bis September Aulacoseira granulata häufig, mit dem Schwerpunkt im August (20 % Anteil an der Gesamtbiomasse). Außerdem traten bei den Goldalgen die häufigen Arten des Frühjahrs erneut auf, besonders im Oktober, mit hohen Anteilen für Dinobryon divergens (11 % Anteil) und Uroglena (53 %).

Im Jahresverlauf traten weitere Taxa auf, die geringe Abundanzen aufwiesen, aber ebenso wie einige der genannten Arten auf eine geringe Trophie verweisen. Dazu zählen aus der Gruppe der Cyanobakterien *Coelosphaerium kuetzingianum*, aus der Gruppe der Chlorophyceen *Willea vilhelmii* und *Quadrigula pfitzeri* und aus der Gruppe der Chrysophyceen *Bitrichia chodatii*, *Synura* und *Dinobryon sociale*.

2013 wurde schwach ausgeprägt ein **Tiefenchlorophyllmaxima (DCM)** im August in 5-7 m Tiefe beobachtet (Daten der Fluoreszenzsonde des LLUR), wobei die spektralen Gruppen "Blaualgen" und "Cryptophyceen" dominierten.

Die gesondert entnommene Profundalprobe vom 18.9. 2013 spiegelt bei den wichtigen Arten kaum die Verhältnsse im Freiwasser wider. Es dominierten eher benthische bzw. benthisch und planktisch lebende Kieselalgen. Am häufigsten waren in der Schlammprobe *Achnanthes minutissima* mit 19 % Anteil an der Gesamtbiomasse (in der Artenliste als *Achnanthidium minutissimum var. minutissimum*), *Fragilaria nanana* (16 % Anteil), *Discostella pseudostelligera* (11 %), *Fragilaria tenera* (10 %) und *Asterionella formosa* (10 %). Weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF findet sich in Kap. 5.2.

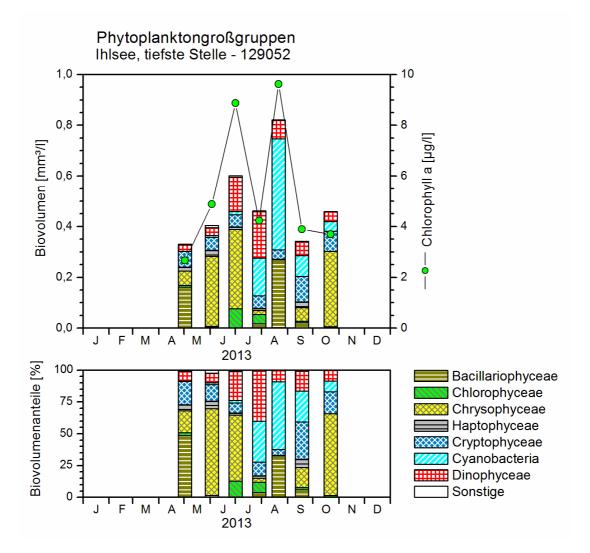


Abb. 28: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Ihlsees 2013. <u>Oben</u>: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

5.13.2 Ergebnisse Zooplankton

Im Ihlsee wurden 42 Metazooplankton-Taxa (28 Rotatorien, 8 Cladoceren und 6 Copepoden) erfasst. An Protozoen wurden 3 Taxa differenziert. Larven der Büschelmücken (*Chaoborus* sp.) und Raubcladoceren (*Leptodora kindtii*) waren ebenfalls in den Proben vorhanden. Der Ihlsee gehört damit zu den eher artenreicheren Seen.

Das **Rotatorienplankton** ist im Frühjahr bereits artenreich zusammengesetzt. Wichtige Taxa zu dieser Zeit sind neben der überall häufigen *Keratella cochlearis*, *Kellicottia longispina*, sowie das koloniebildende Taxon *Conochilus unicornis*. Auch Nahrungsspezialisten (*Ascomorpha* Arten, *Gastropus stylifer*) sind bereits im Frühjahr präsent. Im Hochsommer kommen Flossenrädertiere (*Polyarthra vulgaris*) stärker auf, wobei *Keratella cochlearis* und *Kellicottia longispina* stark vertreten bleiben. In den Hochsommerproben sind vereinzelt auch Litoraltaxa (*Lecane* spp. *Testudinella patina*) zu finden. Im Herbst kommen zu den weiterhin dominanten Taxa *Keratella cochlearis* und *Kellicottia longispina* vereinzelt noch seltenere

Arten, wie *Euchlanis dilatata* oder *Ploesoma hudsoni* hinzu. Die durchschnittliche Rotatorien-Abundanz lag im Ihlsee bei 133,9 Ind. L⁻¹, das Abundanz-Maximum bei 225 Ind. L⁻¹ (Juni). Der Ihlsee liegt damit hinsichtlich der Rotatorienabundanz im niedrigen Bereich.

Das **Cladocerenplankton** im Ihlsee wird im zeitigen Frühjahr (Anfang Mai) durch Rüssel-krebse (*Bosmina longirostris*) dominiert. Anfang Juni und Juli bestimmen Daphnien (*Daphnia galeata* und Hybriddaphnien) das Bild. Im Sommer und Herbst treten neben den deutlich präsent bleibenden Daphnien noch *Diaphanosoma brachyurum* und Rüsselkrebse (*Bosmina coregoni coregoni*) hervor. Die mittlere Abundanz der Cladoceren liegt im Ihlsee bei knapp 3,4 Ind. L⁻¹, das Maximum bei 6 Ind. L⁻¹. Hinsichtlich der Cladoceren-Abundanz liegt der See im unteren, noch oligotrophen Bereich.

Im **Copepodenplankton** des Ihlsees wird zum Beginn der Untersuchung von 3 Taxa (dem calanoiden Copepoden *Eudiaptomus gracilis* sowie den cyclopoiden Copepoden *Cyclops kolensis* und *Thermocyclops oithonoides*) in annähernd gleichen Teilen bestimmt. In den Sommermonaten sind *Thermocyclops oithonoides* und *Mesocyclops leuckarti* die aspektbestimmenden Taxa, wobei die erstgenannte Art etwas häufiger ist. Gegen Ende des Untersuchungszeitraumes bestimmen (in annähernd gleichen Anteilen) *Eudiaptomus gracilis, Thermocyclops oithonoides* und *Mesocyclops leuckarti* das Bild. Die durchschnittliche Abundanz der Copepoden liegt bei 6,9 (Cyclopoide) bzw. 2,1 Ind. L⁻¹ (Calanoide), die maximale Abundanz bei 8 (Cyclopoide) bzw. 4 Ind. L⁻¹ (Calanoide) und gruppiert den See ebenfalls in den niedrigen, eher oligotrophen Bereich.

Die **Protozoen** sind überwiegend schwach vertreten. Vagile Ciliaten erreichen aber im September Abundanzen von immerhin 72 Ind. L⁻¹.

Die mittlere **Biomasse** des Zooplanktons beträgt im Ihlsee im aktuellen Untersuchungsjahr nur 56,8 μg L⁻¹ und gruppiert den See deutlich in den oligotrophen Bereich; maximal werden nur 102 μg L⁻¹ erreicht (Abb. 29). Hinsichtlich der Massenverteilung weist der Ihlsee zumindest von Mai bis Oktober vergleichsweise geringe Schwankungen auf. Am stärksten vertreten sind die Cladoceren und die cyclopoiden Copepoden. Rädertiere stellen im Mittel 7 % der Gesamtbiomasse.

Nahrungsnetz

Auch im Ihlsee ist der Umsatz von Phytoplanktonmasse in Zooplanktonmasse im Juni am günstigsten. Die **Z/P** Relation liegt zu dieser Zeit bei 56 % d⁻¹ und ist als günstig zu bezeichnen. Im Sommer fällt der Transfer von Phytoplanktonmasse in Zooplanktonmasse ungünstiger aus. Die Z/P Relation fällt auf bis auf ca. 16 % d⁻¹ ab (Juli), steigt aber im Herbst wieder auf bis zu 23 % d⁻¹ an. Für den Ihlsee ergibt sich eine gute Übereinstimmung der Jahresgänge von Phytoplankton- und Zooplanktonmasse, was insgesamt auf eine gute Koppelung der beiden Parameter hinweist, obwohl der Umsatz von Phytoplanktonmasse in Zooplanktonmasse im Sommer (aufgrund der starken Präsenz von Dinophyceen und Cyanobakterien) nicht allzu günstig ausfällt.

Der **Cladoceren-Größenindex** (GIC) liegt im Ihlsee im Mittel bei 5,6 μg Ind. ⁻¹ und ist als moderat zu bezeichnen. Das Maximum mit 9,8 μg Ind. ⁻¹ wird im Mai zur Zeit der geringsten Phytoplanktonbiomasse erreicht (Abb. 29).

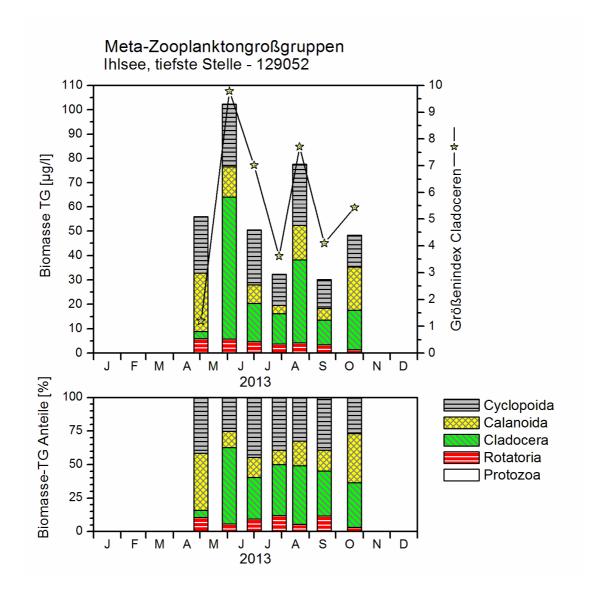


Abb. 29: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Ihlsee 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

5.13.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Der Ihlsee ist ein relativ kleiner kalkarmer See (Sondertyp) mit stabiler sommerlicher Schichtung und geringen Planktongehalten. Das Phytoplankton weist eine große Diversität auf und wird von verschiedenen Algengruppen geprägt. Einen hohen Anteil weisen Chrysophyceen (Goldalgen) auf, was auf eine geringe Trophie hinweist. Desweiteren waren im Sommer Dinophyceen und verschiedenste Cyanobakterien in erhöhten Anteilen vorhanden. Zahlreiche Arten mit geringen Häufigkeiten verweisen auf eine geringe Trophie. Der schwach mesotrophe See wurde anhand der QK Phytoplankton mit **sehr gut** bewertet. Diese Einstufung ist gerechtfertigt.

Das Phytoplankton wurde zuletzt 2008 von März bis Oktober (7x) analysiert, vom gleichen Bearbeiter wie 2013 (ARP & MAIER 2009). Die Planktongehalte 2008 waren sogar noch geringer als die ohnehin schon geringen Gehalte 2013, bei im Mittel gleich niedrigen Phosphorkonzentrationen (Tab. 22). Auch 2008 waren Chrysophyceen stark vertreten, desweiteren in erhöhten Anteilen wie 2013 Dinophyceen und Cyanobakterien. Auch 2008 verweisen zahlreiche Arten, oft die gleichen wie 2013, auf eine geringe Trophie.

Auch 1994 wurde mit 1,7 eine geringe Trophie ermittelt. Die Chl.a-Werte waren entprechend im gleichen Größenbereich wie 2008 und 2013. Die Algenbiovolumina 1994 waren höher, wobei auch *Uroglena* stark vertreten war. Diese Unterschiede sind möglicherweise methodisch bedingt, da die Sichttiefen und der niedrige Chl.a-Gehalt 1994 eher für ähnliche Verhältnisse wie derzeit sprechen (weiteres dazu bei ARP & MAIER 2009).

Insgesamt bleibt der Ihlsee trotz einer geringen Erhöhung der Trophie und des PSI weiterhin auf einem Niveau mit sehr geringen Phytoplanktongehalten und weiterhin zahlreichen Arten, die auf eine geringe Trophie verweisen (Tab. 22).

Tab. 22: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den **Ihlsee.**- <u>Erläuterungen</u>: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

Ihlsee (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mg/l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2008	4,3	0,011	4,3	0,26	1,5	1,1
2013	3,5	0,011	5,4	0,54	1,7	1,4

Zooplankton

Im Ihlsee sind im aktuellen Untersuchungsjahr große Filtrierer von Juni an stark vertreten. Die mittlere Biomasse ist mit nur 56 $\mu g L^{-1}$ (nach TGL 1982) deutlich im oligotrophen Bereich. Bereits im Untersuchungsjahr 2008 wurden mit 72 $\mu g L^{-1}$ ebenfalls niedrige Biomassen gemessen (ARP & MAIER 2009). Auch der **GIC** liegt im aktuellen Jahr mit durchschnittlich 5,6 (maximal knapp 10) μg Ind. mindestens im moderaten, eher im oberen Bereich, was zusammen mit der Präsenz von Raubcladoceren und Büschelmücken Larven für einen niedrigen Fraßdruck durch Fische spricht. Im Jahr 2008 war der GIC mit durchschnittlich ca. 11 μg Ind sogar noch deutlich höher.

Eutrophierungszeiger sind zwar präsent aber schwach vertreten. Zu nennen sind vagile Ciliaten im Herbst, die aber Massen-anteilig keine Rolle spielen. Schwierig ist im Ihlsee die taxonomische Situation der Daphnien. Neben *Daphnia galeata* Morphen treten Morphen mit konvexer Stirn auf, die in die *Daphnia hyalina* Richtung weisen (siehe auch Garrensee).

Eine Kopplung von Phytoplankton- und Zooplanktonmasse ist vorhanden. Allerdings weist das vergleichsweise niedrige Z / P Verhältnis im Sommer auf eine nicht allzu günstige Verwertung des Phytoplanktons durch das Zooplankton hin, was aber durch die Präsenz der Makrophyten bedingt sein kann (siehe auch Bültsee und Garrensee).

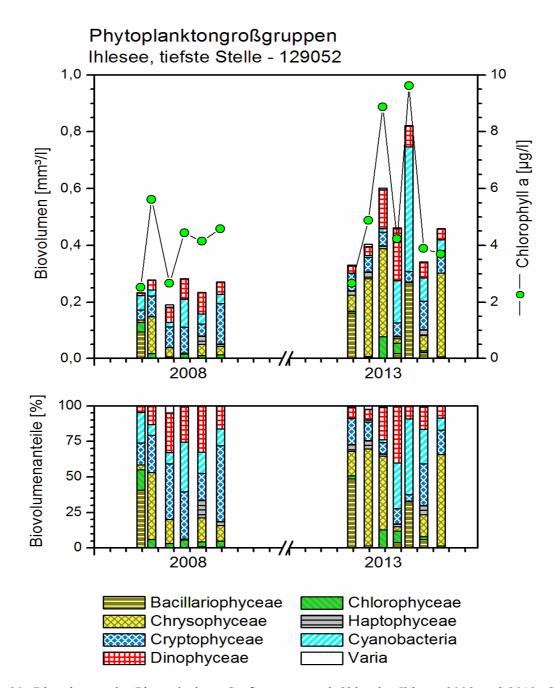


Abb. 30: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Ihlsees 2008 und 2013. Oben: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

5.14 Neversdorfer See

Stammdaten, limnochemische und -biologische Mittelwerte 2013 + Indices								
Seetyp (Plkt.)	VQ [km² 10 ⁶ m ⁻³]	See-Fläche [km²]	Tiefe – mittel [m]	Tiefe – max [m]	th. Verweilzeit [a]			
11 (11.1)	8,2	0,81	3,7	9,8	0,4			
TP _{lm} [mg/l]	TN _{1m} [mg/l]	SiO ₂ -Si _{lm} [mg/l]	Sichttiefe [m]	Chl a [µg/l] Z _{integr.}	BV [mm³/l] Z _{integr.}			
0,064	3,1	0,43	0,8	38,3	5,5			
ZooplTG (mg/l)	Z/P (TG/TG) Juli-Aug.	Trophie-Index (RIEDMÜLLER et al 2013) für 2007	Trophie-Index (RIEDMÜLLER et al 2013) für 2013	PSI ohne DiProf (PhyoSee 5.1) 2007	PSI ohne DiProf (PhyoSee 5.1) 2013			
		4,0 – p2	3,6 - p1	3,6 – unbefried.	3,4 - mäßig			
Т	Tiefenkarte (lin	ks unten) und ob	erirdisches Einzug	gsgebiet (rechts u	nten)			
Neversdorfer See Einzugsgebiet Neversdorfer See								

Der mittelgroße und relativ flache Neversdorfer See liegt südlich von Bad Segeberg im Kreis Segeberg zwischen der Bundesautobahn A21 und Bundesstraße B432 und gehört zum Einzugsgebiet der Trave. Der in windexponierter Ost-West-Richtung ausgerichtete See hat verschiedene kleine Zuflüsse und entwässert im Westen über die Leezener Au in die Trave. Das relativ große Einzugsgebiet ist vorwiegend landwirtschaftlich geprägt. Der See liegt im Grenzbereich von eu- zu polytroph.

2013 wurde der Neversdorfer See bezüglich submerser Makrophyten an ausgewählten Transekten kartiert. Es zeigte sich eine stärkere Ausbreitung gegenüber 2002, v.a. eine starke Ausbreitung von *Elodea nuttallii* (schmalblättrige Wasserperst) bis in etwa 2 m Tiefe, wobei der Deckungsgrad an den Transekten etwa 40-50 % betrug (mündl. Mitteilung U. Hamann, LLUR).

5.14.1 Ergebnisse Phytoplankton

Zwischen Anfang März und Oktober 2013 wurden 8 tiefenintegrierte Mischproben (jeweils 0-6 m) entnommen. Der See weist im Mittel erhöhte Chlorophyll a- Gehalte und Biovolumina auf, mit stärkeren jahreszeitlichen Schwankungen. Es dominieren im Frühjahr vor allem Bacillariophyceen und im Sommer und Herbst Cyanobakterien (Jahresmittel: 38,3 µg 1⁻¹ Chl a und 5,5 mm³ 1⁻¹ Biovolumen; Abb. 31, Tab. 5). Im Rahmen der EU-WRRL wurde der See

mittels mittels der Qualitätskomponente (QK) Phytoplankton) mit **mäßig** bewertet (PSI ohne DI-PROF; genaueres zum PSI siehe Kap. 5.3).

Anfang März während einer noch sehr kalten Periode des Winters wurde ein deutlicher Kieselalgenpeak beobachtet, erkennbar vor allem am Chl.a-Gehalt (Abb. 23). Es dominierten centrale Formen wie *Cyclotella balatonis* (14 % Anteil), *Stephanodiscus hantzschii* (27 %) und *Stephanoduscus neoastraea* (13 %). Chlorophyceen waren auch vermehrt vorhanden, mit *Chlamydomonas*-Arten < 10 µm d (26 % Anteil).

Mitte April war die Haupt-Frühjahrsblüte bereits vorbei. Neben den centrischen Formen des März war nun bei den Bacillariophyceen auch *Asterionella formosa* zu finden (17 % Anteil). Desweiteren traten erste Blaualgen auf (*Anabaena flos-aquae* mit 6 % Anteil) und der kleine Flagellat *Chrysochromulina parva* (7 % Anteil) aus der Gruppe der Haptophyceen.

Im Mai nahm die Biomasse weiter ab. Cyanobakterien nahmen prozentual weiter an Bedeutung zu, neben *Anabaena flos-aquae* die Taxa *Microcystis aeruginosa* und *Aphanocapsa*.

Ab Juni nahmen die Cyanobakterien auch in der Biomasse zu, besonders durch *Anabaena flos-aquae* (24 % Anteil an der Gesamtbiomasse) und *Microcystis aeruginosa* (29 %). Letztgenannte Art nahm bis zum September kontinuierlich zu, sowohl in der Biomasse als auch im Anteil (Sept.: 6,3 mm³ l⁻¹ Biovolumen und 55 % Anteil). Im Oktober nahm der Anteil dieser Art ab (14 %) und sie wurde als dominante Art durch *Microcystis wesenbergii* (53 % Anteil) ersetzt. Weitere bestandsbildende Arten der Cyanobakterien im Sommer waren *Aphanizomenon flos-aquae* im Juli und August (11 und 13 % Anteil) und *Woronichinia naegiliana* von Juli bis September mit kontinuierlich steigenden Werten (4 bis 16 % Anteil).

Dinophyceen hatten ihre stärkste Präsenz im August und September mit den 2 Arten *Ceratium hirundinella* (14 und 17 % Anteil) und *Ceratium furc*oides (4 und 1 %).

Im Oktober nahmen die Bacillariophyceen erwartungsgemäß wieder zu, nun mit den Hauptvertretern *Aulacoseira ambigua und Aulacoseira granulata* (zusammen 7 % Anteil) und der kleinzelligen centrischen *Cyclostephanos dubius* (12 % Anteil an der Gesamtbiomasse).

Die gesondert entnommene Profundalprobe vom 10.9. 2013 zeigt in der Zusammensetzung der dominanten Arten oft das gleiche Spektrum wie bei den in der Biomasse dominanten Arten im Freiwasser. Es herrschten in der Schlammprobe *Stephanodiscus minutulus* (20 % Anteil an der gesamten Schalenzahl), Cyclotella balatonis (18 % Anteil), Aulacoseira ambigua (17 % Anteil), Asterionella formosa (6 %), Aulacoseira granulata (5 % Anteil) und Stephanodiscus neoastraea (4 %) vor. Stephanodiscus minutulus wurde in den Schöpfproben des Freiwassers ebenso gefunden, war jedoch aufgrund der kleinen Größe nicht bestandsbildend. Weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF findet sich in Kap. 5.2.

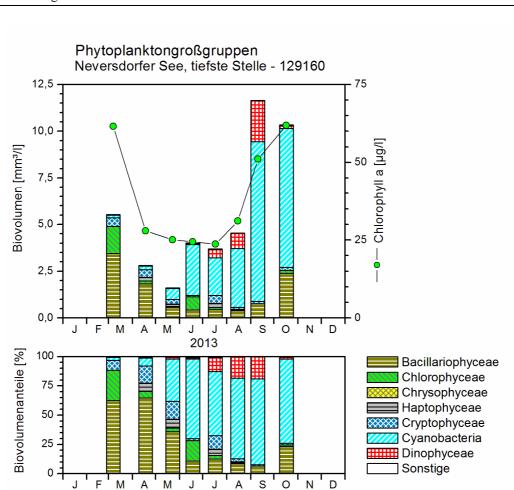


Abb. 31: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Neversdorfer Sees 2013. <u>Oben:</u> Absolute Biovolumina. <u>Unten:</u> Prozentuale Anteile.

2013

5.14.2 Ergebnisse Zooplankton

Im Rahmen der Untersuchungen im Jahr 2013 konnte für den Neversdorfer See nur ein Zooplankton mit einer sehr geringen Artendiversität festgestellt werden. Insgesamt wurden 32 verschiedene Taxa nachgewiesen (Rotatorien 20, Cladoceren 6, Copepoden 6). Besonders bemerkenswert ist das vom Juli bis September regelmäßige Vorkommen von Rotatorien mit Nahrunsspezialisierung (*Trichocerca capucina* und *T. similis*). Erwähnenswert ist darüber hinaus, der wenn auch nur vereinzelte Nachweis der Büschelmücke *Chaoborus flavicans* und des Glaskrebses (der Raubcladocere *Leptodora kindtii*).

Das Bild der **Rotatoriengemeinschaft** wird ganzjährig vor allem von *Keratella cochlearis bzw. Keratella cochlearis var. tecta sowie Keratella quadrata* geprägt, zweier weit verbreiteter und bezüglich ihrer Lebensansprüche sehr toleranten Arten. Im Frühjahrsplankton wurden darüber hinaus noch *Asplanchna priodonta* und *Kellicottia longispina* in vergleichsweise hohen Individuendichten registriert. Von Juni bis September bildet *Pompholyx sulcata* dichte Bestände von bis zu 100 Ind. L⁻¹. Im jahreszeitlichen Verlauf sind zwei deutliche Peaks der Rotatorienentwicklung zu erkennen, der erste Peak entwickelt sich im Mai mit sehr hohen

Abundanzen von mehr als 4600 Ind. L⁻¹, ein zweiter Peak mit einer Individuendichte von 1100 Ind. L⁻¹. wurde im Oktober festgestellt.

Die **Cladocerenfauna** wird im gesamten Untersuchungszeitraum von *Daphnia galeata* dominiert; vereinzelt waren auch *D. cucullata*, *D. hyalina* und die Hydride *Daphnia x krausi* in den Proben vorhanden. Kleinere Blattfußkrebse wie *Diaphanosoma brachyurum* wurden nur im Herbst (September, Oktober) in geringen Individuendichten nachgewiesen. Das Cladocerenplankton ist im Vergleich zu anderen Seen sehr arten- und individuenarm; die mittlere Abundanz der Cladoceren betrug im Neversdorfer See 8 Ind. L⁻¹; das Maximum lag bei 22 Ind. L⁻¹.

Auch die Planktonzönose der **Copepoden** ist mit 6 differenzierten Taxa vergleichsweise artenarm ausgeprägt; noch geringe Nachweise wurden nur im Pinnsee und Blankensee registriert. Die Lebensgemeinschaft wird nahezu ganzjährig von *Mesocyclops leuckarti* dominiert. Lediglich im Frühjahr kommen größere Arten wie *Cyclops vicinus* und *Eudiaptomus graciloides* in höheren Abundanzen vor. Anders als die großen Arten der Gattung *Cyclops* ist *Eudiaptomus graciloides* ganzjährig im Plankton vorhanden; die Entwicklungsmaxima dieser Art liegen im zeitigen Frühjahr sowie im Herbst (Oktober). Die im Falle der Copepoden ermittelten durchschnittlichen Abundanzen sind mit ca. 77 Ind./L. als hoch zu bezeichnen.

Die mittlere **Biomasse** des Zooplanktons im Neversdorfer See ist mit durchschnittlich 336 μg L.⁻¹ vergleichsweise hoch. Nach TGL (1982) resultiert daraus eine Einstufung in den eutrophen Bereich, wobei die Klassengrenze zwischen eutroph und mesotroph bei 300 μg L.⁻¹ liegt. Cyclopoide Ruderfußkrebse haben im Frühjahr die höchsten Anteile an der Biomasse. Im Frühsommer bilden dann vor allem Cladoceren deren Hauptbestandteil (Abb. 32).

Nahrungsnetz

Das Verhältnis von **Z/P** beträgt im Mittel (über die gesamte Vegetationsperiode) 18 % d⁻¹. Bei ausschließlicher Betrachtung der Sommermonate wurden sogar nur 7 % d⁻¹ ermittelt. Im Vergleich zu anderen Seen wird das Phytoplankton durch herbivore Zooplankter nur in unterdurchschnittlichen Größenordnungen verwertet. Im jahreszeitlichen Verlauf ist die Relation von Zooplankton- zu Phytoplanktonbiomasse im Mai am höchsten (44 % d⁻¹).

Für den **Cladoceren-Größenindex** (GIC) wurden im gesamten Untersuchungszeitraum im Mittel 11,2 μg Ind⁻¹. ermittelt, im Sommer waren es 7,6 μg Ind⁻¹. Im jahreszeitlichen Verlauf sinkt der Größenindex vom Frühjahr von mehr als 15 μg Ind⁻¹ bis zum August/September auf Werte um 6 μg Ind⁻¹ ab, steigt aber im Oktober wieder auf knapp 15 μg Ind.⁻¹ an (Abb. 32).

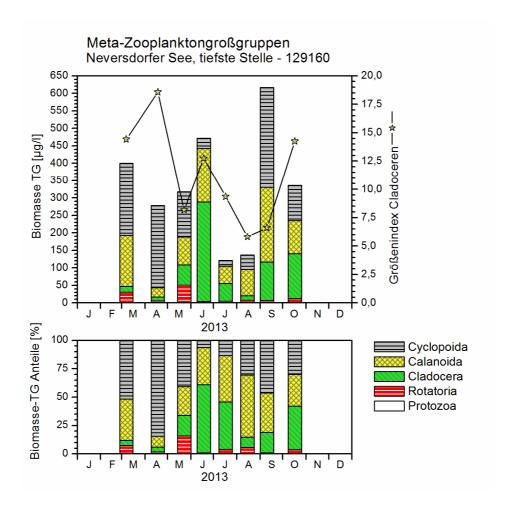


Abb. 32: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Neversdorfer See 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

5.14.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Der mittelgroße relativ flache polymiktische Neversdorfer See (Typ 11.1), der zudem in Ost-West-Richtung exponiert ist, ist ein See mit deutlich erhöhten Planktongehalten, wobei die Algenblüten im Frühherbst am ausgeprägtesten sind. Neben meist gut verwertbaren Bacillariophyceen treten im Sommer und Herbst vor allem nostocale (*Anabaena flos-aquae*, *Aphanizomenon flos-aquae*) und chroococcale (*Microcystis aeruginosa und wesenbergii*) Cyanobakterien auf. Der See war 2013 von Mai bis August geschichtet, wenn auch nicht sehr ausgeprägt. In dieser Zeit war der Sauerstoff ab ca. 6 m Tiefe nahezu verschwunden.

Der stark eu- bis schwach polytrophe See wurde anhand der QK Phytoplankton 2013 mit **mä- ßig** an der Grenze zu **unbefriedigend** bewertet. Diese Einstufung ist gerechtfertigt, da der See im aktuellen Jahr hohe Blaualgenblüten aufwies und Arten, die auf eine geringe Trophie verweisen, nahezu nicht auftraten.

Die letzten Untersuchungen zum Phytoplankton wurden 2007 von KASTEN & MICHELS (2008) durchgeführt. Im Jahr 2007 war der See stärker durchmischt als 2013, mit genügend Sauerstoff im gesamten Wasserkörper während der Messung am Tage. Bei dieser stärkeren

Plankton schleswig-holsteinischer Seen 2013

Turbulenz war der Phosphorgehalt besonders im Sommer erwartungsgemäß höher als 2013, um das Doppelte bis Dreifache. Im Jahresmittel war der Gehalt fast um den Faktor 2 höher. Das gleiche gilt für den Chl.a-Gehalt und das Biovolumen (Tab. 23, Abb. 33).

Im Jahr 2007 dominierten im Frühjahr meist die gleichen centralen Kieselalgen wie 2013. Bis zum Juli war z.B. die weniger gut verwertbare pennale Form Asterionella formosa 2007 stark vertreten. Im Sommer 2007 waren neben Bacillariophyceen vor allem sperrige Dinophyceen (Ceratium) häufig, während die Cyanobakterien (Microcystis aeruginosa) erst ab Spätsommer zunahmen und im August/September die höchsten Biomassen bildeten. Der PSI war 2007 trotz deutlich höherer Planktongehalte nur um 0,2 Punkte höher als 2013, erreichte so jedoch die Stufe 4 (unbefriediegend).

Inwieweit die unterschiedliche Temperaturschichtung der Hauptgrund für die deutliche Abnahme der Nährstoff- und Planktongehalte von 2007 bis 2013 war oder eine verringerte Nährstoffzufuhr in den letzen 6 Jahren auch eine der Ursachen ist, kann hier nicht ermittelt werden. Betrachtet man auch noch das Jahr 2001, wo der Trophiestatus mit 3,9 nahezu den gleichen Wert wie 2007 aufwies, die Nährstoff- und Planktongehalte ähnlich hoch wie 2007 waren und das Phytoplankton, das von SPETH & SPETH (2001) untersucht wurde, in der Tendenz Arten mit höheren Trophieansprüchen als 2007 aufwies (siehe KASTEN & MICHELS 2008), ist zu vermuten, daß es im letzten Jahrzehnt einen Trend der Trophieverringerung gibt (Trophie für 2011: 3,9). Dies wird auch dadurch untermauert, daß von 2001 über 2007 bis 2013 der TP-Gehalt während der Frühjahrsvollzirkulation abgenommen hat.

Tab. 23: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den Neversdorfer See.- Erläuterungen: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

Neversdorfer See (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2007	0,8	0,118	76,4	13,1	4,0	3,6
2013	0,8	0,064	38,3	5,5	3,6	3,4

Zooplankton

Das Zooplankton des Neversdorfer Sees zeichnet sich durch eine vergleichsweise geringe Taxadiversität aus. Seltene Arten wurden im Untersuchungszeitraum nicht beobachtet; allenfalls bemerkenswert ist das Vorkommen von Trichocerca capucina und T. similis mit spezifischen Nahrungsansprüchen bzw. der Fähigkeit insbesondere *Dinophyceae* verwerten zu können.

Die durchschnittliche Biomasse des Zooplanktons liegt 2013 mit 0,3 mg L.-1 deutlich unter den 2007 von Kasten & Michels (2008) ermittelten Werten (0,8 mg L.⁻¹). Die Produktivität des Sees hat sich bis 2013 offensichtlich vermindert, nach TGL (1982) würde dieser jetzt an der Grenze zwischen mesotrophem und eutrophem Bereich eingeordnet. Da das Phytoplankton eine ganz ähnliche Tendenz aufweist, kann der Rückgang des Zooplanktons tatsächlich als Auswirkung einer verminderten Trophie diskutiert werden. Das 2013 vorhandene Artenspektrum bzw. die jetzt geringeren Anteile von Trophiezeigern wie *Daphnia cucullata* bestätigen den Trend einer Nährstoffverminderung.

-121-

Bezüglich der Zusammensetzung des Phytoplanktons gibt es im Spätsommer/Frühherbst kaum Unterschiede zwischen beiden Jahren; auch 2013 nimmt die Verwertbarkeit des Phytoplanktons durch herbivore Zooplankter in der zweiten Jahreshälfte ab. In diesem Zeitraum bestimmen Cyanobakterien die autotrophe planktische Gesellschaft, was zu einer Entkopplung der Nahrungsbeziehungen zwischen Phyto- und Zooplankton führt. Dies zeigt sich auch in einem deutlichen Rückgang des im Frühjahr relativ hohen Z/P-Verhältnis (Maximalwert im Mai: 44 % d⁻¹); im Juli / August wurden nur noch Werte um 7 % d⁻¹ ermittelt. Wie auch 2007 konnten große invertebrate Räuber wie *Leptodora kindti* und *Chaoborus flavivans* im Spätsommer und im Herbst im Zooplankton nachgewiesen werden. Ein Fraßdruck durch ist allenfalls moderat vorhanden.

Eine saisonale Entwicklung der Zooplanktongesellschaft nach dem PEG-Modell war auch 2013 nicht zu beobachten: Die Entwicklung großer herbivorer Arten (*Daphnia galeata*) erreicht erst Mitte Juni ihren einzigen Höhepunkt mit Individuendichten die deutlich unter denen des Jahres 2007 liegen.

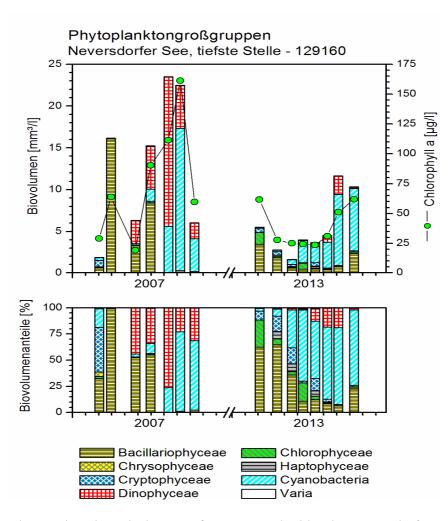


Abb. 33: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Neversdorfer Sees 2007 und 2013. <u>Oben</u>: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

5.15 Pinnsee

Stammdaten, limnochemische und –biologische Mittelwerte 2013 + Indices								
Seetyp (Plkt.)	VQ [km ² 10 ⁶ m ⁻³]	See-Fläche [km²]	Tiefe – mittel [m]	Tiefe – max [m]	th. Verweilzeit [a]			
88.5 (10.1)	6,6	0,08	4,7	8,3	0,5			
TP _{lm} [mg/l]	TN _{1m} [mg/l]	SiO ₂ -Si _{lm} [mg/l]	Sichttiefe [m]	Chl a [µg/l] Z _{integr.}	BV [mm³/l] Z _{integr.}			
0,029	0,70	0,10	2,2	51,9	7,1			
ZooplTG (mg/l)	Z/P (TG/TG) (% / d) Juli-Aug.	Trophie-Index (RIEDMÜLLER et al 2013) für 2004	Trophie-Index (RIEDMÜLLER et al 2013) für 2013	PSI ohne DiProf (PhyoSee 5.1) 2004	PSI ohne DiProf (PhyoSee 5.1) 2013			
0,14	< 1	2,9 – e1	3,0 - e1	-	-			
7	Tiefenkarte (links unten) und oberirdisches Einzugsgebiet (rechts unten)							
Pinnsee Constitution of the content of the conte								

-122-

Der kleinflächige gelegene Pinnsee (8,1 ha) ist ein Versauerungssee (Sondertyp 88.5) und von daher ein seltener Seetyp in Schleswig-Holstein (pH im Bereich 5-6). Der See liegt 2 km östlich von Mölln und ist Teil eines Naturschutzgebietes. Er ist vollständig von Wald umgeben, wobei Buchenwaldgesellschaften bodensaurer Standorte vorherrschen (STUHR 2000). Sein Einzugsgebiet ist in Relation zum Seevolumen groß. Der sehr stabil geschichtete Pinnsee ist schwach eutroph.

5.15.1 Ergebnisse Phytoplankton

Zwischen Anfang Mai und Oktober 2013 wurden 7 tiefenintegrierte Mischproben (jeweils 0-6 m) entnommen. Der Pinnsee weist bei relativ niedrigen Nährstoffgehalten im Mittel deutlich erhöhte Chlorophyll a- Gehalte und Biovolumina auf (Jahresmittel: 51,9 µg l⁻¹ Chl a und 7,1 mm³ l⁻¹ Biovolumen; Tab. 5). Es dominieren im Mai und Juni bei relativ geringen Biomassen und geringer Artenvielfalt Cryptophyceen (Schlundalgen) und Chlorophyceen (Grünalgen) und ab Juli/August bei deutlich erhöhten Plankton-Gehalten kontinuierlich Raphidophyceen mit dem einzigen Vertreter *Gonyostomum semen*, einem sehr großvolumigen Flagellaten

(Abb. 34). Im Rahmen der EU-Wasserrahmenrichtlinie (WRRL) wurde der Pinnsee mittels Phytoplankton nur testweise bewertet, da dieser in Deutschland seltene Gewässertyp im Rahmen der WRRL nicht mit erfasst wurde (siehe Kap. 5.3).

Anfang Mai dominierten deutlich verschiedene Arten der Chlorophyceen, v.a. *Monoraphidium contortum* (38 % Anteil an der Gesamtbiomasse), *Dictyosphaerium pulchellum* (8 % Anteil) und unbestimmte kugelige Chlorococcales < 3 µm d (18 % Anteil). Daneben trat die relativ kleinvolumige Art *Cryptomonas marssonii* (16 % Anteil) aus der Gruppe der Cryptophyceen verstärkt hervor. Im Folgemonat nach einem Einbruch der Gesamtbiomasse nahm die genannte Art ebenso ab, wies aber relativ erhöhte Anteile auf (51 %).

Ab Juli nahmen die großvolumigen und damit durch das Zooplankton schlecht verwertbaren Arten deutlich zu. *Gymnodinium uberrimum* (5 % Anteil) aus der Gruppe der Dinophyceen, ein großvolumiger Flagellat > 30 μm, trat erstmalig seit vielen Jahren 2013 auf, ebenso der noch größere Flagellat *Gonyostomum semen* (53 % Anteil) aus der nah verwandten Gruppe der Raphidophyceen, der eine Größe > 50 μm aufweist. Daneben traten Chlorophyceen gehäuft noch ein letztes Mal für 2013 auf, mit der Art *Oocystis parva* (33 % Anteil).

Ab Ende Juli bis Ende Oktober dominierte deutlich *Gonyostomum semen*, mit Anteilen von 53 % Ende Juli und danach mindestens 79 %. *Gonyostomum semen* ist ein typischer Vertreter saurer mooriger Gewässer (Kusber 2003) und ist eher z.B. in Skandinavien häufig (Cronberg et al. 1988), kann aber auch in neutralen Seen vorkommen. Diese Art hat Trichocysten, aus denen bei Berührung mit Badenden Gallertfäden ausgeschleudert werden, so dass die Algen am Körper kleben (Huber-Pestalozzi & Fott 1968), mit der möglichen Folge von Juckreizen und allergischen Reaktionen. Das Auftreten der Art führt manchmal zur Schließung von Badestellen (Cronberg et al. 1988). Diese Algenart ist zudem fähig zur Vertikalwanderung, um z.B. Nährstoffe in tieferen Schichten aufzunehmen oder in tieferen bakerienreicheren Schichten möglicherweise auf heterotrophe Lebensweise umzuschalten, was ebenfalls potentiell möglich ist (Cronberg et al. 1988). Dies würde das sehr hohe Chl.a-TP-Verhältnis erklären, das im Mittel etwa 4fach höher als in den übrigen im Jahr 2013 untersuchten Seen ist. Die Relation Chl./Biovolumen liegt im "normalen" Bereich. Inwieweit *Gonyostomum semen* im Pinnsee aufgrund des niedrigen pH oder wegen der durch den niedrigen pH geringeren Konkurrenz anderer Algen dominiert, kann nicht gesagt werden.

Neben der genannten Art waren im Sommer nur noch Dinophyceen mit *Gymnodinium uber-rimum* (2 - 5 % Anteil) und Taxa des *Peridinium-umbonatum*-Komplexes (4 - 7 % Anteil) häufig, zudem im Herbst aus der Gruppe der Conjugatophyceen (Zieralgen) eine kleinwüchsige Art der Gattung *Cosmarium* (5 und 10 % Anteil).

2013 wurden im Sommer **Tiefenchlorophyllmaxima (DCM)** in unterschiedlichen Tiefen gefunden, z.B. in 4-5 m im August und 3-4 m im September (Daten der Fluoreszenzsonde des LLUR). Ein DCM in dieser relativ geringen Tiefe ist nur in einem windgeschützten kleinen See möglich.

In der gesondert entnommenen Profundalprobe vom 24.9. 2013 wurde von den häufig gefundenen Schalen nur *Tabellaria flocculosa* ebenso in der Freiwasserschöfprobe gefunden. Die Haupttaxa des Profundalschlamms waren *Eunotia* (14 % Anteil), *Tabellaria flocculosa* (14 % Anteil), *Stephanodiscus minutulus* (11 % Anteil), *Cyclotella ocellata* (9 % Anteil) und *Euno-*

tia rhomboidea (7 %). *Eunotia* lebt eher benthisch. Weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF findet sich in Kap. 5.2.

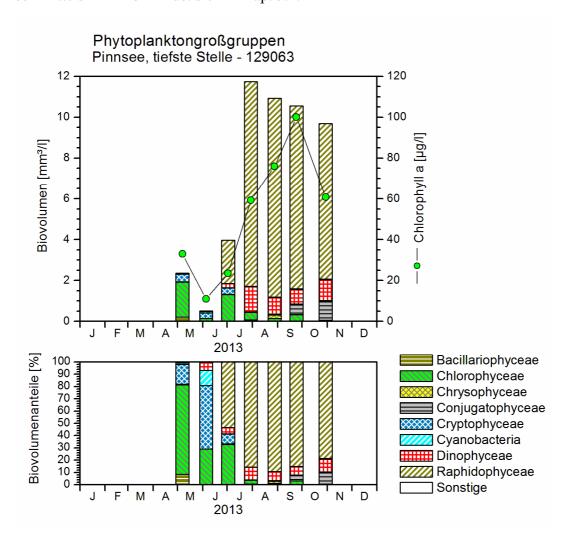


Abb. 34: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Pinnsees 2013. <u>Oben</u>: Absolute Biovolumina. Unten: Prozentuale Anteile.

5.15.2 Ergebnisse Zooplankton

Plankton schleswig-holsteinischer Seen 2013

Der Pinnsee ist mit nur 21 Metazooplankton-Taxa (13 Rotatorien, 5 Cladoceren und 3 Copepoden) der artenärmste der untersuchten Seen. An Protozoen wurden 2 Taxa differenziert, wobei vagile Ciliaten eine deutliche Rolle spielen (siehe unten). Larven der Büschelmücken (*Chaoborus* sp.) sind in den Monaten Juni und Juli stark vertreten.

Das **Rotatorienplankton** wird im Frühjahr von nur 3 Arten (*Keratella hiemalis*, *Keratella valga* und dem koloniebildenden Rädertier *Conochilus hippocrepis*) bestimmt. In den Sommermonaten (und im Herbst) sind "Flossenrädertiere" (*Polyarthra dolichoptera*, *Polyarthra remata*) dominant. Erwähnenswert ist das Auftreten des generell seltenen Rädertiers *Hexarthra mira*. Die durchschnittliche Rotatorien-Abundanz lag im Pinnsee bei 147,1 Ind. L⁻¹, das Abundanz-Maximum bei 432 Ind. L⁻¹ (Juli). In der zweiten Hälfte des Untersuchungszeitraums

fällt die Abundanz der Rotatorien stark ab. Der Pinnsee liegt hinsichtlich der Rotatorienabundanz allenfalls im mittleren Bereich.

Das **Cladocerenplankton** ist im Pinnsee ebenfalls einfach strukturiert. Im Mai und Juni sind nur 2 Taxa (*Bosmina longirostris* und *Ceriodaphnia quadrangula*) präsent, wobei die Rüsselkrebse im Juni ein deutliches Maximum ausbilden. Im Sommer und Herbst bestimmt *Ceriodaphnia quadrangula* das Bild. Daphnien (*Daphnia cucullata*, *Daphnia galeata*) sind schwach bzw. vereinzelt und nur in den Monaten Juli, August und Oktober vertreten. Die mittlere Abundanz der Cladoceren liegt im Pinnsee bei knapp 42,7 Ind. L⁻¹, das Maximum bei 262 Ind. L⁻¹. Hinsichtlich der Cladoceren-Abundanz liegt der See im oberen, eutrophen Bereich.

Das **Copepodenplankton** des Pinnsees wird von cyclopoiden Copepoden (*Cyclops strenuus*) dominiert, wobei die genannte Art nur im Frühjahr in nennenswerten Abundanzen präsent ist. Calanoide Copepoden spielen absolut keine Rolle. Das Copepodenplankton im Sommer ist bis auf wenige, vereinzelt auftretende Individuen von *Cyclops strenuus*, *Thermocyclops oithonodes* extrem verarmt. Die durchschnittliche Abundanz der Copepoden liegt bei 13,4 (Cyclopoide) bzw. 0,04 Ind. L⁻¹ (Calanoide), die maximale Abundanz bei 60 (Cyclopoide) bzw. 0,2 Ind. L⁻¹ (Calanoide) und gruppiert den See in den mittleren Bereich.

Bei den **Protozoen** ist ein der Anstieg der Abundanz zum Herbst hin deutlich. Vagile Ciliaten erreichen im September Abundanzen von immerhin 39 Ind. L⁻¹.

Die mittlere **Biomasse** des Zooplanktons beträgt im Pinnsee im aktuellen Untersuchungsjahr nur 137,3 μ g L⁻¹ und gruppiert den See nach TGL deutlich in den mesotrophen Bereich; maximal werden 443 μ g L⁻¹ erreicht (Abb. 35). Auffällig ist der hohe mittlere Anteil der cyclopoiden Copepoden sowie der sehr geringe Anteil der Calanoiden an der Gesamtbiomasse des Metazooplanktons.

Nahrungsnetz

Der Pinnsee weist nur im Monat Juni einen günstigen Umsatz von Phytoplankton- in Zooplanktonmasse auf. Mit einem $\mathbf{Z/P}$ Verhältnis von 193 % d^{-1} liegt die Probenahme im Juni allerdings vermutlich bereits im beginnenden Klarwasserstadium. In den Sommer- und Herbstmonaten laufen Phytoplankton- und Zooplanktonmasse völlig entkoppelt. Trotz sehr hohem Phytoplanktonniveau (allerding von Dinophyceen und Raphidophyceen) bleibt das Zooplanktonniveau auf sehr niedrigem Level. Die $\mathbb{Z/P}$ Relation fällt von Juli bis Oktober auf Werte von < 1 % d^{-1} .

Der **Cladoceren-Größenindex (GIC**) liegt im Pinnsee im Mittel bei 1,7 μg Ind. ⁻¹; und ist als äußerst niedrig zu bezeichnen. Das Maximum mit nur ca. 2,0 μg Ind. ⁻¹ wird im April erreicht (Abb. 35).

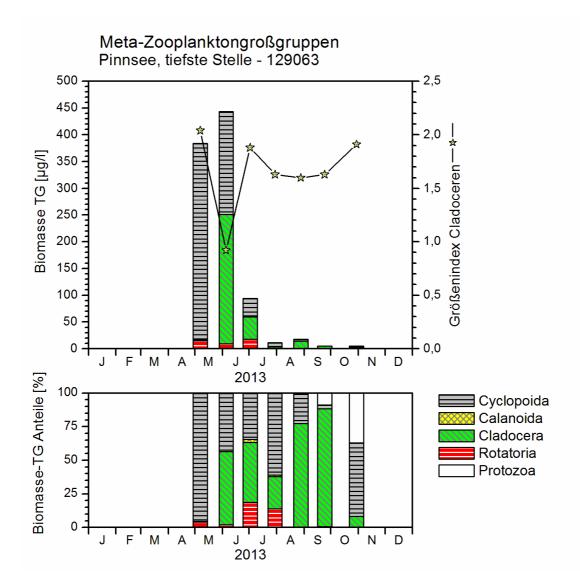


Abb. 35: Biomasse (Trockengewicht) des Zooplanktons und Cladoceren-Größenindex für den Pinnsee 2013. <u>Oben</u>: Absolute Biomassengehalte. <u>Unten</u>: Prozentuale Anteile.

5.15.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Der kleine versauerte Pinnsee zeigt als Sondertyp auch im Phytoplankton Besonderheiten. Der trotz einer mittleren Tiefe von 4,7 m sommerlich stabil geschichtete See wurde 2013 ab Juli im Phytoplankton von sehr großvolumigen Flagellaten dominiert, v.a. *Gonyostomum semen* aus der Gruppe der Raphidophyceen (näheres zu dieser Art Kap. 5.15.1). Diese in unserer Region eher seltene Algengruppe ist nah mit den Cryptophyceen und Dinophyceen verwandt. Sie werden teilweise auch Chloromonaden genannt.

Insgesamt ist der Pinnsee artenarm. Dieser See wurde anhand der QK Phytoplankton nur testweise bewertet (Kap. 5.3).

Altdaten liegen von mehreren Jahren des letzten Jahrzehnts und einiger der 1990er Jahre vor, jedoch in unterschiedlicher Dichte. Im Jahr 2002 und die Jahre davor wurden nur 3 Proben je Jahr entnommen und von Speth analysiert (u.a. Speth & Speth 2001 und 2002). In den Jahren 2003 (Spieker et al. 2004a) und 2004 (ARP 2005c) wurden Proben in ähnlicher Dichte wie 2013 entnommen (Abb. 36), während 2006 und 2007 wieder nur jeweils 3 Proben vorhanden waren (ARP & DENEKE 2007 UND KASTEN & MICHELS 2008). Einen Überblick über die Phytoplanktondaten einiger Jahre und Informationen zu den dominanten Arten finden sich u.a. bei ARP (2005c) und KASTEN & MICHELS (2008).

In allen genannten Jahren sind im Pinnsee im Frühjahr coccale Grünalgen dominant. Meist sind es *Scenedesmus*-Arten (bis 2007) oder *Monoraphidium contortum* 2013. Im Sommer bis in den Herbst hinein herrschten in allen Jahren vor allem großvolumige Flagellaten vor. In den Jahren 2002, 2003, 2004, 2006, 2007 und abgeschwächt im Jahr 2013 war dies die Hornalge *Gymnodinium uberrimum*, in den Jahren davor eine nicht genauer identifizierte *Gymnodinium*-Art. Im Jahr 2013 trat erstmalig *Gonyostomum semen* hervor. Im Herbst treten zudem in vielen Jahren dominant Chrysophyceen auf, v.a. mit der Gattung *Dinobryon* (dazu mehr bei KASTEN & MICHELS 2008).

Auffällig ist die starke Dominanz von großvolumigen Flagellaten im Sommer im Pinnsee (*Gymnodinium* und *Gonyostomum*) (Abb. 36). Im Pinnsee mit einer mittleren Tiefe von 4,7 m sind die großen Flagellaten sehr gut in der Lage, vertikal in der Wassersäule zu wandern. Dies zeigen auch die Chl.-Daten der Fluoreszenzsonde des LLUR im Pinnsee. Durch die Fähigkeit zur Vertikalwanderung können besonders große Flagellaten schnell in tiefere Schichten gelangen, um möglicherweise Nährstoffe und/oder Bakterien aufzunehmen. Für diese These spricht das sehr hohe Chl.a/TP – Verhältnis (TP aus 1 m), das etwas 4fach höher als in den anderen untersuchten Seen des aktuellen Jahres 2013 ist. Das Umsschalten auf Heterotrophie bei Flagellaten ist weitverbreitet (JONES & ILMAVIRTA 1988, ISAKSSON 1998).

Die durch das Zooplankton schlechte Verwertbarkeit dieser großen Flagellaten im Pinnsee ist ein weiterer Konkurrenzvorteil und in der Zooplanktonentwicklung deutlich erkennbar (siehe unten).

Insgesamt ist der Pinnsee in allen Jahren artenarm. Gleichzeitig wies der See im Planktonbild von Jahr zu Jahr relativ geringe Abweichungen auf. Zusammenfassend zeigt der Vergleich wichtiger Summenparameter verschiedener Jahre ein stabiles Planktonsystem des Pinnsees. Dazu wurden zum Vergleich die 3 Jahre 2003, 2004 und 2013 genommen, in denen eine vergleichbare Mindestzahl von 7 Proben vorhanden war (mind. 7, max. 9 Proben) (Tab. 24).

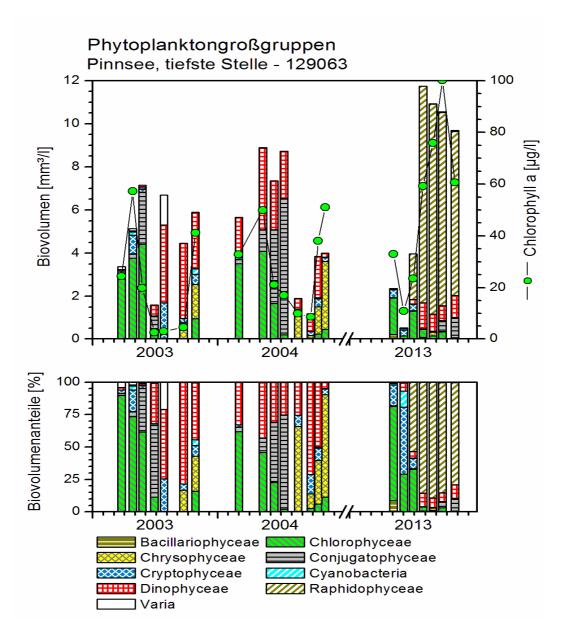


Abb. 36: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Pinnsees 2003, 2004 und 2013. Oben: Absolute Biovolumina. Unten: Prozentuale Anteile.

Tab. 24: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den **Pinnsee**.- <u>Erläuterungen</u>: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

Pinnsee (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2003	1,9	0,033	28,6	5,7	3,0	-
2004	1,9	0,033	31,2	5,2	2,9	-
2013	2,2	0,029	51,9	7,1	3,0	-

Zooplankton

Der Pinnsee fällt auch im aktuellen Untersuchungsjahr mit seinen nur 21 nachgewiesenen Zooplankton Taxa durch seine Artenarmut auf. Hervorstechende Merkmale sind insbesondere das fast völlige Fehlen von Daphnien und calanoiden Copepoden (d.h. das Fehlen von großen Filtrierern!). Die Ergebnisse aus dem aktuellen Jahr decken sich mit Ergebnissen aus früheren Jahren (ARP & DENEKE 2006, KASTEN & MICHELS 2008). Der GIC ist mit durchschnittlich 1,7 μg Ind. außergewöhnlich niedrig und deutet auf Fischeffekte hin. Gegen Fischeffekte spricht aber die deutliche Präsenz der großen Büschelmücken Larven bis hinein in den Monat Juli, so dass in erster Linie die "extremen" abiotischen Bedingungen (Versauerung und Elektrolytarmut) für das Vorherrschen der kleinen Filtrierer verantwortlich sein dürfte bzw. könnte. Vergleicht man die mittleren Biomassen über die Jahre 2006-2013 so ergeben sich folgende Werte (cf. ARP & DENEKE 2006; KASTEN & MICHELS 2008; ARP & MAIER 2009; diese Untersuchung):

2006: 0,16 mg L⁻¹

2007: 0,03 mg L⁻¹

2008: 0,09 mg L⁻¹

2013: 0,14 mg L⁻¹.

Mit diesen Werten liegt der Pinnsee hinsichtlich der Zooplanktonmasse nach TGL (1982) im oligotrophen (Jahre 2007, 2008) bis schwach mesotrophen Bereich (Jahre 2006, 2013). Saisonale Abläufe entsprechen nicht dem PEG-Modell. Die Biomassen sind im aktuellen Jahr von Juli an in einem extrem niedrigen Bereich << 25 μg L⁻¹. Einen negativen Eindruck vermittelt die deutliche Präsenz von vagilen Ciliaten in den Sommer- und Herbstmonaten bei – wie gesagt – extrem niedrigen Biomassen des Zooplanktons. Das niedrige Z/P Verhältnis und damit der extrem schlechte Umsatz von Phytoplankton- in Zooplanktonmasse während der Sommerund Herbstmonate ist zweifellos durch die ungünstige Nahrungssituation während dieser Zeit bedingt. Mit einer Z/P Relation von < 1% d⁻¹ von Juli bis Oktober nimmt der See im negativen Sinne eine Sonderstellung ein. ARP & DENEKE (2007) geben für den See ein durchschnittliches Z/P Verhältnis von nur 3 % d⁻¹ an, ARP & MAIER (2009) ermittelten Z/P Raten von << 10 % d⁻¹. Die Einschätzung aus den Vorjahren was den Umsatz von Phytoplankton- in Zooplanktonmasse angeht stimmen gut mit der hier gemachten Einschätzung überein, wobei beachtet werden muss, dass sich die Einschätzung der Vorjahre nur auf das fressbare Phytoplankton bezieht. Hätte man in den Vorjahren das gesamte Plankton in ihre Berechnungen einbezogen, so wäre eine noch deutlich bessere Übereinstimmung der Untersuchungen von 2006 und 2008 und der im aktuellen Untersuchungsjahr zu beobachten.

5.16 Ukleisee

Stammdaten, limnochemische und -biologische Mittelwerte 2013 + Indices								
Seetyp (Plkt.)	VQ [km² 10 ⁶ m ⁻³]	See-Fläche [km²]	Tiefe – mittel [m]	Tiefe – max [m]	th. Verweilzeit [a]			
10 (10.1)	5,3	0,33	7,3	17	0,6			
TP _{1m} [mg/l]	TN _{1m} [mg/l]	SiO ₂ -Si _{1m} [mg/l]	Sichttiefe [m]	Chl a [µg/l] Z _{integr.}	BV [mm³/l] Z _{integr.}			
0,028	1,26	1,51	1,7	23,2	4,8			
ZooplTG (mg/l)	Z/P (TG/TG) (% / d) Juli-Aug.	Trophie-Index (RIEDMÜLLER et al 2013) für 1983	Trophie-Index (RIEDMÜLLER et al 2013) für 2013	PSI ohne DiProf (PhyoSee 5.1) 1983	PSI ohne DiProf (PhyoSee 5.1) 2013			
0,15	12	2,9 – e1	2,8 – e1	-	2,7 - mäßig			
Tiefenkarte (links unten) und oberirdisches Einzugsgebiet (rechts unten)								
Unionice Continue Continue								

-130-

Der relativ kleine Ukleisee liegt im eiszeitlich geprägten östlichen Hügelland Schleswig-Holsteins. Der See liegt abseits etwas nördlich der Seenkette der Schwentine südwestlich vom Bungsberg und entwässert ein östlich gelegenes Einzugsgebiet in den westlich gelegenen Kellersee. Das Einzugsgebiet ist vollständig bewaldet. Aufgrund der für die Fläche relativ großen mittleren Tiefe von 7,3 m ist der See sommerlich stabil geschichtet (LAWAKÜ 1993). Der Ukleisee ist schwach eutroph.

5.16.1 Ergebnisse Phytoplankton

Zwischen Mitte Mai und Ende Oktober 2013 wurden 7 tiefenintegrierte Mischproben (0-3 bis 0-8 m) entnommen.

Der Ukleisee wies im Mittel erhöhte Chlorophyll a- Gehalte und Biovolumina auf, wobei die jahreszeitliche Verteilung ungewöhnlich war. Es dominieren bis zum Frühsommer in hohen Biomassen fädige Cyanobakterien, danach bei deutlich geringerer Biomasse zahlreiche Algengruppen, in erster Linie Dinophyceen, Bacillariophyceen und Chlorophyceen, und Ende Oktober erneut Blaualgen (Abb. 36a). Das Jahresmittel betrug 23,2 µg l⁻¹ Chl a und 4,8 mm³ l⁻¹

¹ Biovolumen (Tab. 5). Im Rahmen der EU-WRRL wurde der See mittels mittels der Qualitätskomponente (QK) Phytoplankton mit **mäßig** bewertet (PSI ohne DI-PROF, genaueres zum PSI siehe Kap. 5.3).

Mitte Mai, im Anschluß an die Frühjahrsvollzirkulation, wurde in der ersten Probe ungewöhnlicherweise *Planktothrix rubescens* (Burgunderblutalge) aus der Gruppe der Blaualgen in hoher Dichte gefunden (98 % Anteil an der Gesamtbiomasse) (Probentiefe 0-5 m). Die in der Lugolprobe nicht erkennbare Rotfärbung wurde durch eine Lebendprobe bestätigt; Dr. Mandy Bahnwart LLUR). Die Daten der Fluoreszenzsonde zeigen ein Maximum der spektralen Gruppe "gemischt", zu der die Burgunderblutalge gehört, in 2-4 m. Die Alge hatte somit im Mai begonnen, sich in tieferen Schichten zu etablieren.

Planktothrix rubescens ist eine rotpigmentierte Alge aus der Gruppe der Oscillatoriales, die durch zwei Besonderheiten gekennzeichnet ist: Zum einen hat sie auf Grund ihrer roten akzessorischen Photopigmente die Fähigkeit, noch bei sehr geringem Licht zu wachsen (z.B. im Sommer in tieferen Wasserschichten). Desweiteren weist sie eine im Vergleich mit anderen toxinbildenden Blaualgen sehr hohe Toxizität durch das Blaualgentoxin Microcystin auf (FASTNER 1997, FASTNER et al. 1999). In manchen stabil geschichteten Seen wie dem Ukleisee kommt sie im Sommer in tieferen Schichten vor und kann unter günstigen Bedingungen nach der herbstlichen Durchmischung im gesamten Wasserkörper weiterwachsen, teils bis zum nächsten Frühsommer, und manchmal sogar eine rote Wasserfarbe erzeugen.

Ende der 90er Jahre des letzten Jahrhunderts wurde in drei Gewässern in Schleswig-Holstein wiederholt im Winter/Frühjahr eine Rotfärbung des Wassers durch Massenvorkommen dieser Art beobachtet (ARP & KOPPELMEYER 2004 und 2005).

Auch Anfang Juni war *Planktothrix rubescens* mit 94 % Anteil an der Gesamtbiomasse noch die dominierende Art im Ukleisee. Ab Juli brach die Population ein und die Biomasse erreichte nur noch etwa 16 % des Juniwertes. Der relative Anteil war jedoch immer noch hoch (46 %).

Der Fund der Burgunderblutalge korrespondiert damit, dass 2013 ein **Tiefenchlorphyllma-ximum** (**DCM**) von Juli bis September ermittelt wurde (Daten einer Fluoreszenzsonde der Fa. Moldaenke; Messung vom LLUR).Das DCM lag im Bereich 4 - 6 m im Juli bis 5 – 7 m Ende September. Bei der Messung wurde bis Anfang August die spektrale Gruppe "gemischt" als Hauptgruppe des DCM gemessen, wozu rotpigmentierte Blaualgen gehören können. Ab Ende August nahm die "braune Gruppe" überhand, während die "gemischte Gruppe" abnahm.

Ab Juli nach dem Absinken der Burgunderblutalge in tiefere Wasserschichten traten im oberen Wasserkörper erstmalig andere Algengruppen hervor, v.a. der großvolumige Flagellat *Ceratium hirundinella* aus der Gruppe der Dinophyceen (37 % Anteil). Diese Art stabilisierte sich im Laufe des Julis und erreichte Anfang August in etwa das gleiche Biovolumen. Andere Arten traten im August hinzu, wenn auch nur subdominant. Es waren meistens solche Taxa, die auf eine geringe Trophie verweisen, wie *Coelastrum reticulatum* (5 % Anteil) aus der Gruppe der Chlorophyceen, *Dinobryon sociale* (2 % Anteil) aus der Gruppe der Chrysophyceen und picoplanktische Cyanobakterien, z.B. *Aphanocapsa* (2 % Anteil).

Bis Ende August nahm der Anteil von *Ceratium* ab und es trat in hoher Abundanz die ebenso auf eine geringe Trophie verweisende Indikatorart *Cyclotella ocellata* (47 % Anteil) aus der Gruppe der Bacillariophyceen hervor. Diese Art erreichte auch im September noch 8 % Anteil, während *Ceratium hirundinella* (27 % Anteil) und unbestimmte Chloorococcales (31 % Anteil) im genannten Monat noch deutlicher hervortraten.

Ende Oktober wurde aus 0 – 8 m Tiefe eine Probe entnommen und die Gesamtbiomasse war zwar auf ein Minimum abgesunken, aber die Burgunderblutalge hatte mit 53 % Anteil an der Gesamtbiomasse (ca. 0,1 mm³ l⁻¹ Biovolumen) wieder geringfügig gegenüber September zugenommen. Das **DCM** war aufgelöst (Daten der Fluoreszenzsonde des LLUR). Die Biomasse der Burgunderblutalge war absolut relativ gering.

In der gesondert entnommenen Profundalprobe vom 26.9. 2013 findet sich die gefundene dominante Art des Freiwassers, *Cyclotella ocellata*, wieder. Diese Art hatte einen Anteil von 34 % an der Gesamtschalenzahl. *Stephanodiscus minutulus* war noch etwas häufiger und wies einen Anteil von 36 % auf. Diese Art war möglicherweise im Frühjahr im Ukleisee häufig (fehlende Freiwasserproben im März/April). Weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF findet sich in Kap. 5.2.

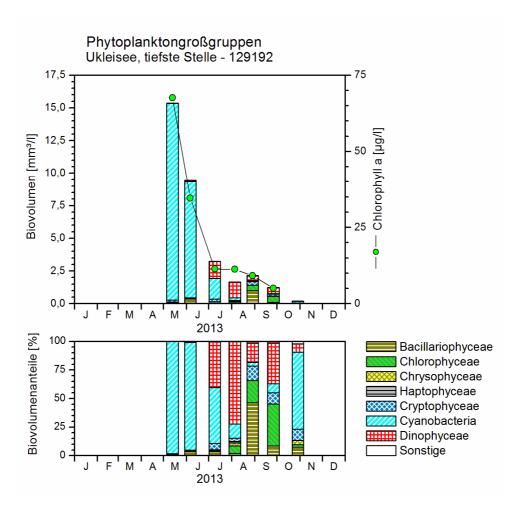


Abb. 36a: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Ukleisees 2013. Oben: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

5.16.2 Ergebnisse Zooplankton

Im Ukleisee wurden 42 Metazooplankton-Taxa (22 Rotatorien, 10 Cladoceren und 10 Copepoden) erfasst, wobei insbesondere die hohe Zahl an nachgewiesenen Cladoceren und Copepoden hervorsticht. An Protozoen wurden zusätzlich 3 Taxa differenziert. Larven der Büschelmücken (*Chaoborus* sp.) und Raubcladoceren (der Glaskrebs *Leptodora kindtii*) waren ebenfalls in den Proben vorhanden. Der Ukleisee gehört daher zu den eher artenreicheren Seen.

-133-

Das **Rotatorienplankton** wird im Mai durch *Kellicottia longispina* dominiert (ca. 46 % der Rotatorienzönose). Weitere wichtige Taxa zu dieser Zeit sind die generell häufigen Taxa *Keratella cochlearis*, und "Flossenrädertiere" (*P. dolichoptera*). Bereits im Juni kommt *Pompholyx sulcata* (Eutrophierungszeiger) stark auf und bleibt bis in den Hochsommer hinein zusammen mit *Keratella cochlearis* das aspektbestimmende Taxon. Im Herbst sind Nahrungsspezialisten der Gattung *Trichocerca* häufig, wobei *Trichocerca pusilla* eutrophe Bedingungen indiziert. Die durchschnittliche Rotatorien-Abundanz lag im Ukleisee bei 97,4 Ind. L⁻¹, das Abundanz-Maximum bei 231 Ind. L⁻¹ (Juni). Der Ukleisee liegt damit hinsichtlich der Rotatorienabundanz im niedrigen Bereich.

Das **Cladocerenplankton** des Ukleisees wird im Frühjahr durch Daphnien (*Daphnia cuculla-ta* und Hybriddaphnien) beherrscht, die allerdings massenanteilig zumindest im Mai dünn vertreten sind. Ende August sind Rüsselkrebse und *Diaphanosoma brachyurum* – neben den Daphnien – stark vertreten. Im September und Oktober bestimmen wieder die Daphnien das Bild. Die mittlere Abundanz der Cladoceren beträgt im Ukleisee bei 11,9 Ind. L⁻¹, das Maximum liegt bei 22 Ind. L⁻¹. Hinsichtlich der Cladoceren-Abundanz liegt der See deutlich im mittleren, mesotrophen Bereich.

Das **Copepodenplankton** im Ukleisee ist bereits zum Beginn der Untersuchung (Mitte Mai) artenreich zusammengesetzt. Bereits zu dieser Zeit sind 9 Taxa präsent, wobei die calanoiden Copepoden (*Eudiaptomus gracilis* und *Eudiaptomus graciloides*) und der cyclopoide Copepode *Cyclops kolensis* anteilig die stärksten Taxa sind. Im Sommer und Herbst bleiben die calanoiden Copepoden (insbesondere *Eudiaptomus graciloides*) stark vertreten. An cyclopoiden Copepoden sind allenfalls *Mesocyclops leuckarti* und *Thermocyclops oithonoides* präsent. Die durchschnittliche Abundanz der Copepoden liegt bei 9,1 (Cyclopoide) bzw. 9,7 Ind. L⁻¹ (Calanoide), die maximale Abundanz bei 16 (Cyclopoide) bzw. 18 Ind. L⁻¹ (Calanoide) und gruppiert den See in den mittleren Bereich. An der Abundanz wird bereits die große Bedeutung der calanoiden Copepoden im Ukleisee deutlich.

Die **Protozoen** sind überwiegend schwach vertreten. Allenfalls sind das Urnentierchen (*Tintinnopsis* sp.) sowie Schalenamöben (*Difflugia* sp.) zu nennen. Ihre Abundanz bleibt aber < 15 Ind. Ind. L⁻¹.

Die mittlere **Biomasse** des Zooplanktons beträgt im Ukleisee im aktuellen Untersuchungsjahr nur 145,2 μ g L⁻¹ und gruppiert den See deutlich in den mesotrophen Bereich; maximal werden 189 μ g L⁻¹ erreicht (Abb. 37). Auffallend im Ukleisee sind die vergleichsweise hohen Anteile der calanoiden Copepoden (im Mittel 36 %) an der Gesamtbiomasse des Zooplanktons. Rädertiere stellen in diesem See im Mittel nur 2 % der Gesamtmasse des Zooplanktons.

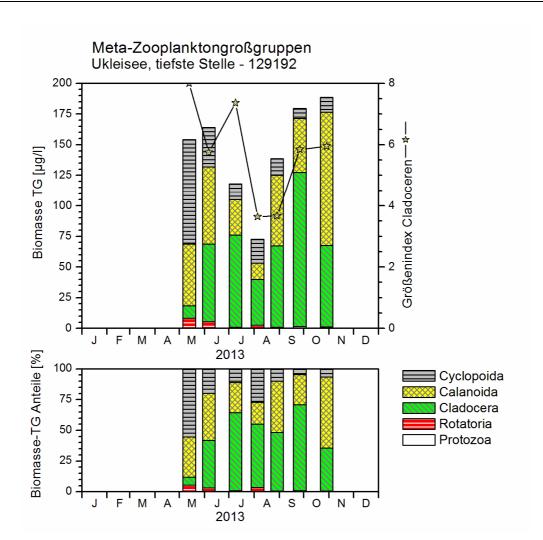


Abb. 37: Biomasse (in μg Trockenmasse L⁻¹) und prozentuale Anteile der taxonomischen Hauptgruppen des Zooplanktons im Ukleisee im Jahr 2013.

Nahrungsnetz

Im Ukleisee ist kein Einklang im Verlauf von Phytoplanktonmasse und Zooplanktonmasse zu sehen. Die **Z/P** Relation liegt bis in den Juli hinein bei Werten < 10 % d⁻¹, was sicherlich auf die starke Präsenz der schlecht fressbaren Cyanobakterien und Dinophyceen zurückzuführen ist. Erst gegen Ende des Untersuchungzeitraums steigt die Z/P Relation auf 32 (September) bis ca. 200 % d⁻¹ (Oktober) an, was auf einen besseren Transfer von Phytoplankton- in Zooplanktonmasse hindeutet und vermutlich der etwas gestiegenen Menge an besser fressbaren Algen zuzuschreiben ist.

Der **Cladoceren-Größenindex** (GIC) liegt im Ukleisee im Mittel bei 5,8 μg Ind. ⁻¹; und ist als moderat bis hoch zu bezeichnen. Das Maximum mit 8,0 μg Ind. ⁻¹ wird im April erreicht (Abb. 37).

5.16.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Der relativ tiefe und kleine Ukleisee war 2013 ein besonderer See. Im Mai und Juni, den zwei ersten Probenahmemonaten, wurden hohe Biomassen der **Burgunderblutalge** aus der Gruppe der Cyanobakterien analysiert (*Planktothrix rubescens*) (näheres dazu Kap. 5.16.1). Möglicherweise war der gesamte Frühling und auch der Winter 2012/13 von dieser Art dominiert, nachdem, so ist zu vermuten, diese Alge bereits 2012 im Sommer im Metalimnion überdauerte. Im Sommer, nachdem die Burgunderblutalge in tiefere Wasserchichten abgesunken war, waren die Planktongehalte in der durchlichtetetn Zone nur moderat erhöht.

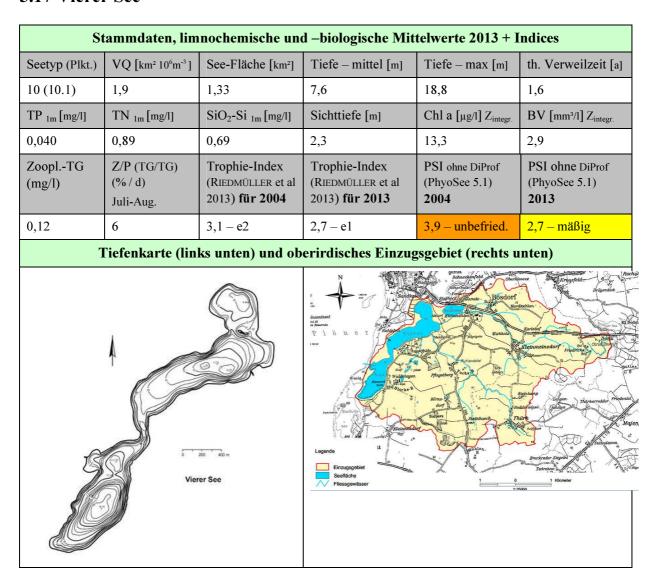
-135-

Die Burgunderblutalge tritt in unserer Region vor allem in meso- bis schwach eutrophen und geschichteten Seen auf, da die Alge während des Sommers nur in tieferen Wasserschichten des unteren Metalimnions / Hypolimnions bei Schwachlicht den Sommer überdauern kann und dann bei günstigen Lichtbedingungen im Herbst während der Zirkulation im gesamten Wasserkörper weiterwachsen kann. Und solche Bedingungen sind nur möglich, wenn die Trophie nicht zu hoch ist. Der windgeschützt liegende stabil geschichtete Ukleisee (Typ 10) mit einem mittleren Phosphorgehalt von 0,028 m/l TP erfüllt genau diese Bedingungen. Im Jahr 2013 war er schwach eutroph (Tab. 25).

Die Einstufung des Sees anhand der QK Phytoplankton ist für 2013 mit **mäßig** gerechtfertigt, da die potenziell eher toxische Burgunderblutalge im Frühsommer hohe Biomassen bildete.

Altdaten zum Phytoplankton liegen nicht vor.

Tab. 25: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den **Ukleisee**.- <u>Erläuterungen</u>: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.


Ukleisee (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
1983					2,9	
2013	1,7	0,028	23,2	4,8	2,8	2,7

Zooplankton

Der Ukleisee hinterlässt hinsichtlich des Zooplanktons einen besseren Eindruck als der zum gleichen Seetyp gehörende Vierersee. Das Cladocerenplankton wird praktisch den gesamten Untersuchungszeitraum durch große Filtrierer dominiert. Entsprechend liegt der GIC im Mittel im Bereich einer 1 mm langen Daphnie (bei knapp 6 µg Ind⁻¹). Zusammen mit dem vergleichsweise hohen GIC spricht die deutliche Präsenz von Büschelmücken Larven in den Proben für geringe Fraßeffekte durch Fische. Auffällig im Ukleisee ist auch die anteilig starke Präsenz der calanoiden Copepoden, was den See ebenfalls in den eher moderat bis niedrigen Trophiebereich rückt.

Die Biomasse gruppiert den See nach TGL (1982) in den (unteren) mesotrophen Bereich. Ein Gleichgang von Phytoplanktonmasse und Zooplanktonmasse ist allerdings kaum zu sehen, wobei insbesondere der Phytoplankton Peak im Frühjahr nur in einem geringen Anstieg der Zooplanktonmasse resultiert. Der während der überwiegenden Zeit (Ausnahme Oktober) geringe Umsatz von Phytplanktonmasse in Zooplanktonmasse sowie die deutliche Präsenz von Eutrophierungszeigern bei den Rädertieren weist auf eine eher "weniger günstige Phytoplanktonsituation" hin, was durch die Präsenz von schlecht fressbaren Cyanobakterien und Dinophyceen während bis August bestätigt wird. Der See wurde bereits 1082/83 hinsichtlich des Zooplanktons untersucht (LAWAKÜ 1993). In dieser Untersuchung wurden ebenfalls Eutrophierungszeiger beim Zooplankton nachgewiesen.

5.17 Vierer See

Der Vierer See ist ein mittelgroßer und –tiefer See inmitten des Plöner Seengebietes südlich von Plön bei Bösdorf. Das Einzugsgebiet ist nicht sehr groß. Der VQ (Einzugsgebietsfläche/Seevolumen) liegt mit 1,9 im Grenzbereich vom Seetyp 10 zu 13. Die Entwässerung aus

dem Einzugsgebiet findet v.a. ins Nordbecken statt. Die tiefste Stelle befindet sich im Südbecken, der Seeablauf am Westufer im Südteil, mit Abflüssen zwischen 200 und 550 l/. Die Unterwasservegetation ist homogen und bis etwa 2,5 m Tiefe vorhanden (LANU 1997). Der Vierer See ist schwach eutroph.

5.17.1 Ergebnisse Phytoplankton

Zwischen April und Oktober 2013 wurden 7 tiefenintegrierte Mischproben (0-5 bis 0-9 m) entnommen. Der Vierer See weist im Mittel leicht erhöhte Chlorophyll a- Gehalte und Biovolumina auf, wobei wie im Gr. Plöner See nur während der Frühjahrsentwicklung eine starke Kieselalgenblüte zu beobachten war, während im Sommer und Herbst auf niedrigem Biomasseniveau zahlreiche Algengruppen mit wechselnden Dominanzen dominieren (Jahresmittel: 13,3 µg l⁻¹ Chl a und 2,9 mm³ l⁻¹ Biovolumen; Tab. 5, Abb. 38). Im Rahmen der EU-WRRL wurde der See mittels mittels der Qualitätskomponente (QK) Phytoplankton mit **mäßig** bewertet (PSI ohne DiPROF, genaueres zum PSI siehe Kap. 5.3).

Der ausgeprägte Kieselalgenpeak im April war deutlich von den centralen Arten *Cyclotella balatonis* (41 % Anteil an der Gesamtbiomasse) und *Stephanodiscus alpinus* (52 % Anteil) geprägt.

Nach dem Zusammenbruch der Blüte im Mai war die Biomasse Ende Mai sehr gering (0,2 mm³ l⁻¹ Biovolumen) und *Cyclotella balatonis* wies mit 41 % die gleichen Anteile bei deutlich abnehmender Biomasse auf. Daneben traten bei den Kieselalgen andere Arten neu auf, *Stephanodiscus neoastraea* (10 % Anteil) und *Fragilaria crotonensis* (16 % Anteil). Desweiteren wiesen die Grünalgen einen erhöhten Anteil mit der Art *Planktosphaeria gelatinosa* (15 %) auf.

Nach der Übergangszeit nahm ab Juni zu Beginn des Sommers die Biomasse wieder zu und typische Sommerformen traten hervor, zum einen *Ceratium hirundinella* (20 % Anteil) aus der Gruppe der Dinophyceen, *Staurastrum* (12 % Anteil) aus der Gruppe der Conjugatophyceen (Zieralgen) und 3 Picoplankter mit zusammen 10 % Anteil (*Aphanocapsa, Aphanotece, Cyanodictyon*).

Im Juli bei leicht abnehmenden Gehalten dominierten nun plötzlich Chrysophyceen (Goldalgen) mit den Hauptvertretern *Uroglena* (42 % Anteil an der Gesamtbiomasse) und *Dinobyon sociale* (20 %), desweiteren *Chrysochromulina parva* (15 % Anteil) aus der Gruppe der Haptophyceen.

Mitte August bei abnemender Biomasse war erneut ein drastischer Wechsel zu beobachten. Nun traten zum einen kleine Grünalgen relativ stark hervor (cf. *Chlorella* mit 47 % Anteil), desweiteren zahlreiche *Anabaena*- und *Aphanizomenon*-Arten aus der Gruppe der nostocalen Cyanobakterien (zusammen 13 % Anteil).

Die 4 Aphanizomenon-Arten nahmen im September weiter zu und erreichten bei steigenden Biomassen einen Anteil von 13 %. Im gleichen Monat waren auch andere fädige Blaualgen stark vertreten, besonders Pseudanabaena limnetica (10 % Anteil) und Planktothrix agardhii (12 %). Aus anderen Algengruppen traten auch fädige Formen verstärkt hervor, zum einen Mougeotia (8 %) aus der Gruppe der Xanthophyceen; hier in der Abb. 29 unter "Sonstige"

aufgelistet) und zum anderen die centrische Kieselalge *Aulacoseira granulata* (14 % Anteil). Die seltene Art *Aulacoseira islandica*, regelmäßig in erhöhter Dichte im Gr, Plöner See zu finden, wurde im September im Vierer See mit 0,2 % Anteil gefunden.

-138-

In der gesondert entnommenen Profundalprobe vom 9.9. 2013 wurde als Hauptart *Stephanodiscus minutulus* (50 % aller Schalen) ermittelt, die in der Freiwasserprobe nur untergordnet zu finden war. Die nächstwichtige Art war *Stephanodiscus alpinus* (22 % Anteil), eine Art, die auch im Freiwasser stärker zu finden war. Die drittwichtigste Art im Profundalschlamm 2013 war *Asterionella formosa* (10 % Anteil). Weiteres zur Auswertung der Profundaldiatomeen mittels DI-PROF findet sich in Kap. 5.2.

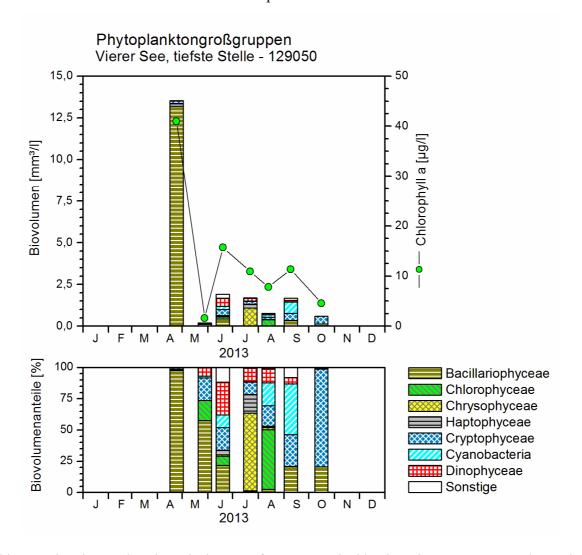


Abb. 38: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Vierer Sees 2013. <u>Oben</u>: Absolute Biovolumina. <u>Unten</u>: Prozentuale Anteile.

5.17.2 Ergebnisse Zooplankton

Im Vierersee wurden 38 Metazooplankton-Taxa (24 Rotatorien, 7 Cladoceren und 7 Copepoden) erfasst. An Protozoen wurden zusätzlich 6 Taxa differenziert. Larven der Dreikantmuschel (*Dreissena* sp.), Büschelmücken (*Chaoborus* sp.) und Raubeladoceren (*Leptodora kind-*

-139-

tii) waren ebenfalls in den Proben vorhanden. Der Artenreichtum des Zooplanktons im Vierersee ist allenfalls als moderat zu bezeichnen.

Das Rotatorienplankton wird im April durch Keratella Arten (Keratella cochlearis, sowie die kalt stenotherme Keratella hiemalis) und Flossenrädertiere (Polyarthra dolichoptera) dominiert (zusammen ca. 84 % der Rotatorienzönose). "Flossenrädertiere" treten in den beiden Folgemonaten zunächst zurück, während zumindest Keratella cochlearis noch deutlich präsent bleibt. Im Sommer ist die starke Entwicklung von Filinia longiseta auffällig. Die Art stellt im Juli immerhin ca. 45 % der Rotatorienzönose. An Eutrophierungszeigern ist Pompholyx sulcata deutlich im Juni vertreten (ca. 15 % der Rotatorienzönose). Vereinzelt sind auch Brachionus Arten (Brachionus diversicornis) präsent. Erwähnenswert ist das Vorkommen des generell eher seltenen Taxons Hexarthra mira im Vierersee. Die durchschnittliche Rotatorien-Abundanz lag bei 178,4 Ind. L⁻¹, das Abundanz-Maximum bei 334 Ind. L⁻¹ (Juli). Der Vierersee liegt damit hinsichtlich der Rotatorienabundanz im mittleren, mesotrophen Bereich.

Cladoceren sind im Vierersees im April (bis auf wenige Rüsselkrebse) kaum vertreten. Im Mai und Juni kommen Daphnien (Daphnia cucullata und Daphnia galeata) in geringen bzw. moderaten Dichten vor. Das Sommerplankton wird von Rüsselkrebsen (Bosmina longirostris) dominiert. Erst gegen Ende des Untersuchungszeitraumes treten wieder Daphnien (Daphnia cucullata) auf. An Eutrophierungszeigern ist das Linsenkrebschen (Chydorus sphaericus) im September präsent, erreicht allerdings nicht die Abundanzen der Daphnien und Bosminen. Die mittlere Abundanz der Cladoceren beträgt im Vierersee 7,7 Ind. L⁻¹, das Maximum liegt bei 24 Ind. L⁻¹. Hinsichtlich der Cladoceren-Abundanz liegt der See ebenfalls im (unteren bis) mittleren, mesotrophen Bereich.

Das Copepodenplankton im Vierersees ist zum Beginn der Untersuchung artenreich zusammengesetzt. Neben 3 Arten der Gattung Cyclops und neben dem calanoiden Copepoden Eudiaptomus graciloides sind die aus der Diapause aufgestiegenen C5 Copepodide von Thermocyclops oithonoides und Mesocyclops leuckarti bereits stark vertreten. In den Monaten Mai und Juni ist der calanoide Copepode das anteilig stärkste Taxon. In den Sommermonaten tritt das Copepodenplankton extrem stark in den Hintergrund (siehe auch Biomassenanteile). Beispielsweise betragen die Abundanzen im August < 1 Ind L⁻¹. Im September nimmt die Copepoden Abundanz (Abundanz der "Sommerarten" Mesocyclops leuckarti und Thermocyclops oithonoides) wieder zu. Die durchschnittliche Abundanz der Copepoden liegt bei 11,1 (Cyclopoide) bzw. 7,6 Ind. L⁻¹ (Calanoide), die maximale Abundanz bei 37 (Cyclopoide) bzw. 45 Ind. L⁻¹ (Calanoide) und gruppiert den See wieder in den mittleren Bereich. Wie im Ukleisee wird im Vierersee bereits an der Abundanz die Bedeutung der calanoiden Copepoden deutlich, die hier allerdings nur im Frühjahr eine Rolle spielen.

Die Protozoen sind im Vierersee im Sommer stark durch vagile Ciliaten vertreten. Ihre Abundanz beträgt im August ca. 175 Ind. L⁻¹.

Die mittlere Biomasse des Zooplanktons beträgt im Vierersee im aktuellen Untersuchungsjahr 115,0 μg L⁻¹. Dieser vergleichsweise niedrige Wert, der den See nach TGL (1982) in den schwach mesotrophen Bereich gruppiert wird stark geprägt durch die niedrigen Biomassen in der wärmeren Jahreszeit. Maximal werden 485 µg L⁻¹ (Mai) erreicht (Abb. 39). Auffallend im

Vierersee (wie bereits bei den Abundanzen genannt) sind die vergleichsweise hohen Anteile der calanoiden Copepoden an der Gesamtmasse des Metazooplanktons im Frühjahr. Geradezu hervorstechend sind die hohen Anteile der Protozoen und Rädertiere (maximal ca. 30 bzw. 60 %) an der Gesamtmasse des Zooplanktons im Sommer.

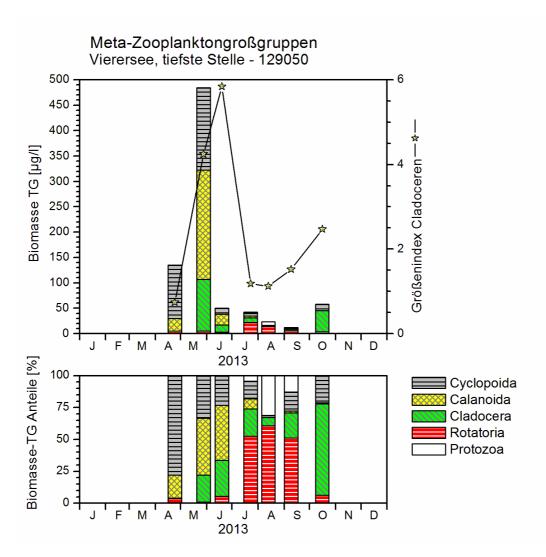


Abb. 39: Biomasse (in μg Trockenmasse L⁻¹) und prozentuale Anteile der taxonomischen Hauptgruppen des Zooplanktons im Vierersee im Jahr 2013.

Nahrungsnetz

Im Vierersee ist keinerlei Gleichgang zwischen Phytoplanktonmasse und Zooplanktonmasse festzustellen. Beide Parameter verlaufen absolut entkoppelt. Mit Ausnahme eines einzelnen, extrem hohen Wertes zum Zeitpunkt der Probenahme am 28. Mai (> 500 % d⁻¹; vermutlich Klarwasserstadium) bleibt das Z/P Verhältnis bis in den September hinein bei Werten < 7 % d⁻¹. Lediglich bei der letzten Probenahme ist ein (allerdings auch nicht allzu hoher) Z/P Wert von 21 % d⁻¹ festzustellen.

Der Cladoceren-Größenindex (GIC) liegt im Vierersee im Mittel bei 2,4 μ g Ind.⁻¹; und ist als niedrig zu bezeichnen. Das Maximum mit 5,8 μ g Ind.⁻¹ wird im Juni (Daphnienpräsenz) erreicht (Abb. 39).

5.17.3 Diskussion Phyto- und Zooplankton

Phytoplankton

Der mittelgroße und stabil geschichtete Vierer See zeichnete sich 2013 durch eine sehr ausgeprägte Frühjahrsblüte von gut verwertbaren centrischen Kieselalgen und im Sommer durch relativ geringe Gehalte verschiedenster Algengruppen aus, wobei dort verschiedene Arten geringer Trophie auftraten. Die Einstufung des Sees anhand der QK Phytoplankton war 2013 **mäßig.** Dies ist vor dem Hintergrund der starken Frühjahrsblüte gerechtfertigt. Der See weist im Planktonbild Ähnlichkeiten mit dem Gr. Plöner See auf.

Altdaten zum Phytoplankton liegen von 2004 von ARP (2005a) vor. Es wurden 5 Proben ausgewertet (März und Juli-Sept.). Bei etwas höheren Nährstoffgehalten war der Planktongehalt im Mittel etwa doppelt so hoch wie 2013 (Abb. 40). Entsprechend war der Trophieindex und vor allem der PSI höher (Tab. 26). Insbesondere im Sommer/Frühlerbst 2004 war das Planktonbild deutlich anders als 2013. Es dominierten 2004 sehr ausgeprägt Dinophyceen mit den 2 Arten *Ceratium hirundinella* und *C. furcoides*.

Tab. 26: Vergleich wichtiger Parameter (Jahresmittel) und Indices des Phytoplanktons und der Trophie im Vergleich 2013 mit früheren Jahren für den **Vierer See.**- <u>Erläuterungen</u>: PSI = Phytosee-Index. PP BV = Phytoplankton-Biovolumen. TP = Gesamtphosphor.

Vierer See (Jahresmittelwerte)	Sicht- tiefe (m)	TP (1 m) (mg/l)	Chl a (Z _{integr.}) (µg/l)	PP BV (Z _{integr.}) (mm ³ /l)	Trophie-Index (RIEDMÜLLER et al 2013)	PSI ohne DiProf (PhyoSee 5.1)
2004	2,1	0,055	26,0	8,0	3,1	3,9
2013	2,3	0,040	13,3	2,9	2,7	2,7

Zooplankton

Der Vierer See weist im aktuellen Untersuchungsjahr vergleichsweise niedrige Zooplanktonmassen auf, was den See insgesamt in den (niedrigen, unteren) mesotrophen Bereich gruppiert (siehe Steckbrief). Die in den Sommermonaten überdeutlich hervortretenden vagilen Ciliaten und Rotatorien bei gleichzeitig niedrigen Zooplanktonmassen sprechen für ungünstige Nahrungsbedingungen und vermutlich hohe Bakterienzahlen. Eutropierungszeiger sind zwar nicht dominant aber doch in der zweiten Jahreshälfte vertreten.

Nach NIXDORF et al. (2005; zitiert in ARP 2005) wird der Vierersee noch als gut (wenig Cyanobakterien im Sommer) eingestuft. Diese Einstufung lässt sich durch das Zooplankton im aktuellen Jahr nicht bestätigen. Bedingt durch das Fehlen der großen Filtrierer im Sommer fällt der GIC in den Sommermonaten (von knapp 6 µg Ind. im Juni) auf 1,2 µg Ind. (Juli, August) ab und bleibt in den Folgemonaten < 2,5 µg Ind. In wie weit dieser "Absturz" des

Juli 2014

GIC in der zweiten Hälfte des Untersuchungszeitraumes durch Fische oder durch das Nahrungsspektrum bedingt wird muss sich in weiteren Untersuchungen zeigen. Bereits im Jahr 2004 werden die schlecht fressbaren Dinoflagellaten im Herbst als wichtige Phytoplankter genannt (ARP 2005).

Der Umsatz von Phytoplankton- in Zooplanktonmasse ist im aktuellen Untersuchungsjahr in den Sommermonaten äußerst gering. Der Jahresgang von Phytoplanktonmasse und Zooplanktonmasse zeigt keinerlei Übereinstimmungen. Im Jahr 2004 wurde noch als Besonderheit die Raubcladocere Bythotrephes longimanus nachgewiesen (ARP 2005), die aktuell nicht in den Proben zu finden war.

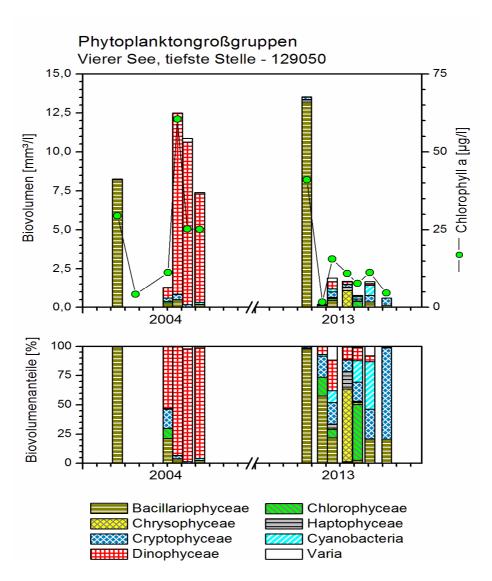
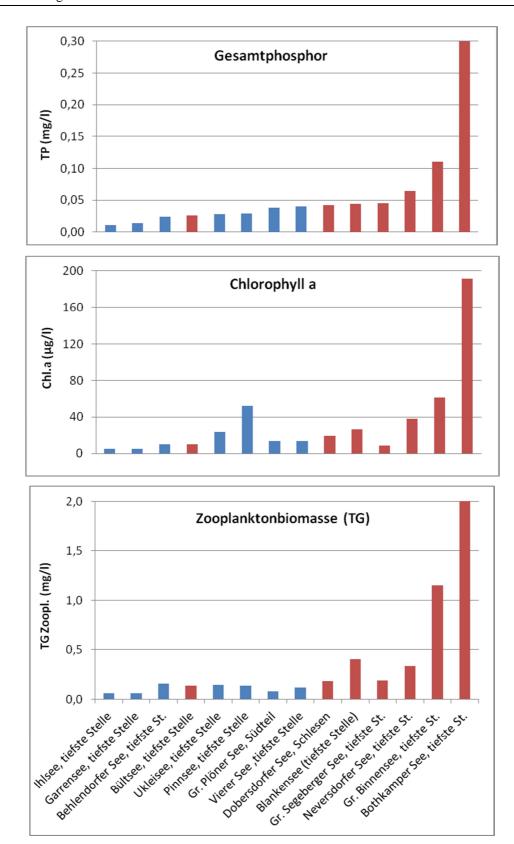


Abb. 40: Biovolumen der Phytoplankton-Großgruppen und Chl.a des Vierer Sees 2004 und 2013. Oben: Absolute Biovolumina. Unten: Prozentuale Anteile.

6. Zusammenfassende Bewertung der untersuchten Seen

6.1 Seenvergleich Phytoplankton


Bei Betrachtung der Jahresmittelwerte für Gesamtphosphor und Chlorophyll a zeigt sich erwartungsgemäß ein Trend einer Zunahme des Chl.a-Gehaltes mit zunehmendem Phosphorgehalt. Es gibt jedoch einige deutliche Ausreißer. Besonders auffällig sind bei moderaten Phosphorgehalten die hohen Planktongehalte im Pinnsee und die nierdigen Planktongehalte im Gr. Segeberger See. Aufällig sind auch die für einen polymiktischen See geringen Phosphor- und Planktongehalte im Bültsee (Abb. 41, oben und Mitte).

-143-

Das Zooplankton als dritte Komponente richtet sich in der mittleren Biomasse tendenziell an der Phytoplanktonbiomasse aus, außer beim Pinnsee, wo die Zooplanktonbiomasse relativ gering ist. In diesem kleinen sauren Waldsee sind als Besonderheit des Phytoplanktons großvolumige Flagellaten dominant, die vom Zooplankton nicht verwertbar sind (siehe Kap. 5.15) Auffällig sind auch die relativ zum Chl.a hohen Zooplanktonbiomassen des Gr. Binnensees (Abb. 41 unten).

Die untersuchten Seen 2013 sind in etwa so zu gruppieren:

- Die 4 im Mittel phosphorärmsten Gewässer **Behlendorfer See, Bültsee, Garrensee** und **Ihlsee** weisen geringe Phytoplanktongehalte auf, die meistens jahreszeitlich gering schwankt. In der Zusammensetzung haben diese Seen zahlreiche sich abwechselnde dominante Algengruppen, außer dem Garrensee, der sehr kalk- und silikatarm ist, daher einen Sonderstatus hat und im Sommer einen hohen Biomasseanteil von *Anabaena* aufweist. Alle genannten Seen sind außer dem Bültsee dimiktisch.
- Der Gr. Plöner See, Vierer See und Ukleisee sind stabil geschichtete Seen (dimiktisch) und haben bei moderat erhöhten Phosphorgehalten einen für diesen Seetyp oft typischen Jahresverlauf, mit einem deutlichen Frühjahrspeak und geringen, oft stetig abnehmenden Biomassegehalten im Verlauf des Sommers bis zum Herbst.
- **Der Dobersdorfer See** und sehr ausgeprägt der **Bothkamper See** und **Neversdorfer See** sind polymiktische Seen, die bei moderaten bis hohen Phosphorgehalten die höchsten Biomassen des Jahres im Sommer aufweisen, mit starker Dominanz der Blaualgen. Der schwach polymiktische **Gr. Segeberger See** und der stark makrophytendominierte und sehr flache **Blankensee** sind Seen, bei denen Blaualgen im Sommer nur kurzzeitig oder gar nicht dominieren.
- Der salzreiche Strandsee **Gr. Binnensee** und der versauerte kleinflächige **Pinnsee**, beide Sondertypen, sind Seen mit besonderem Plankton, vor allem der Pinnsee. Dieser See wird im Sommer von großvolumigen Flagellaten dominiert (*Gonyostomum semen*, in früheren Jahren *Gymnodinium uberrimum*) und ist in anderen Jahreszeiten durch Grünalgen (Frühjahr) und Gold- oder Zieralgen geprägt. Der salzreiche und sehr flache und großflächige Strandsee Gr. Binnensee weist ein sehr diverses Plankton auf, mit höheren Anteilen benthischer Algen und phasenweise starkem Fraßdruck durch das Zooplankton (Kap. 5.10).

-144-

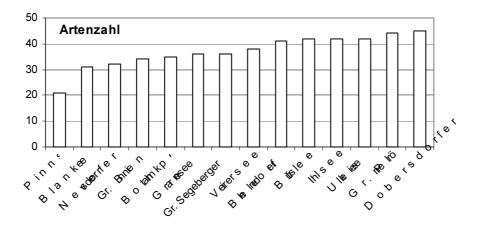
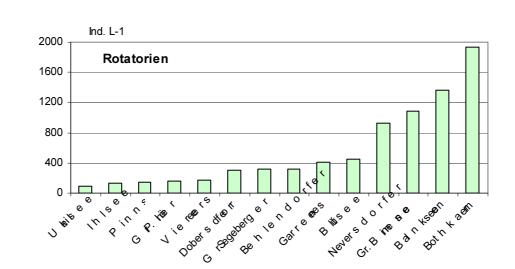
Abb. 41: Untersuchte Seen 2013 im Vergleich. **Oben**: Jahresmittel Gesamt-Phosphor (1m) für jede Messstelle, aufsteigend. **Mitte**: Jahresmittel Chl.a der integrierten Zone. **Unten**: Jahresmittel Zooplankton-TG.- Die Seen sind in allen Abb. nach dem Phosphor sortiert. **Rot**: Polymiktische Seen (Typ 11 + 14); **blau**: dimiktische Seen (Typ 10 + 13).

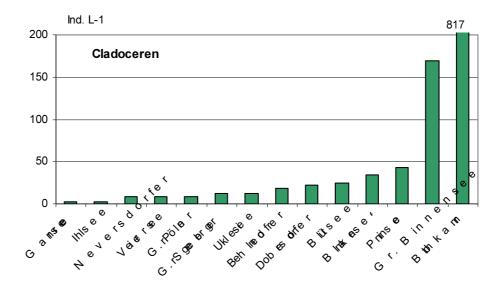
6.2 Seenvergleich Zooplankton

Taxazahl

Hinsichtlich der Taxazahl nimmt der Pinnsee mit nur 21 Metazooplankton-Arten als besonders artenarmer See eine Sonderstellung innerhalb der untersuchten Seen ein. Ebenfalls artenarm mit nur 31 Taxa sind der Blankensee und der Neverdorfer See. Sieben der 14 untersuchten Seen weisen eine Artenzahl von > 40 auf (Abb. 42).

-145-


Abb. 42: Reihung der Seen nach der Anzahl der nachgewiesenen Metazooplankton-Taxa (Rotatorien + Crustaceen; ohne Dreikantmuschel- und Büschelmücken-Larven): Seen S.-H. 2013.

Abundanz

Bei der durchschnittlichen Abundanz der Rotatorien übertrifft der Bothkamper See mit fast 2000 Ind. / L deutlich alle untersuchten Seen. Noch häufig sind Rotatorien in den anderen Flachseen, wie dem Blankensee und dem Gr. Binnensee (Abb. 43) sowie dem eutrophen Neversdorfer See. Hohe durchschnittliche Cladoceren-Abundanzen weisen die polytrophen Seen Gr. Binnensee und insbesondere der Bothkamper See auf. Bei den Copepoden-Abundanzen (Adulte + Copepodide) liegen ebenfalls die polytrophen Seen Bothkamper See und Gr. Binnensee deutlich an der Spitze.

Plankton schleswig-holsteinischer Seen 2013

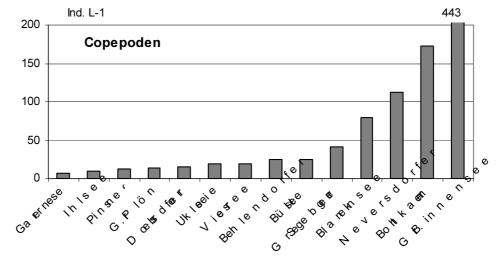


Abb. 43: Reihung der Seen nach der durchschnittlichen Abundanz der Metazooplankton-Großgruppen: Seen S.-H. 2013. Beachte unterschiedlichen Maßstab der y-Achse zwischen Rädertieren und Crustaceen.

Biomasse

Die mittleren Biomassen (Trockenmassen) über den Untersuchungszeitraum (Vegetationsperiode) weisen – nach TGL 1982 - 3 der untersuchten Seen (Ihlsee, Garrensee und Gr. Plöner See) als oligotroph, 7 Seen als mesotroph, 2 Seen als eutroph und 2 weitere Seen als polytroph aus (Abb. 44, obere Graphik). Korrigiert man die tiefen Seen (Seen > 10 m Tiefe) auf ein Zugvolumen von 10 m, so ergeben sich Verschiebungen in der Seenreihung, wobei allerdings die elaktrolytarmen Seen, wie Garrensee, Ihlsee und Bültsee im niedrigen Bereich, die eutrophen bis polytrophen Seen im hohen Bereich bleiben. Eine deutliche Veränderung ergibt sich für den Gr. Plöner See, der in die obere Hälfte der Reihung rutscht.

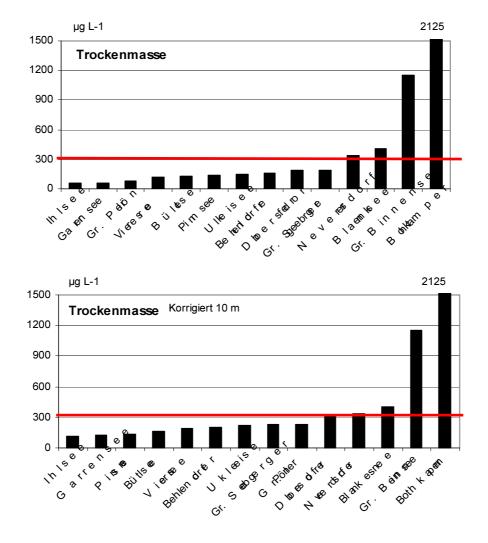


Abb. 44: Reihung der Seen nach der mittleren Trockenmasse in der Vegetationsperiode: Seen S.-H. 2013.- Rote Line markiert Grenze zwischen mesotroph und eutroph nach TGL (1982). Obere Graphik Trockenmassen über das Zugvolumen; untere Graphik tiefe Seen korriert auf 10 m Zugvolumen.

Juli 2014

Größenstruktur, Nahrungsnetzeffekte

Die durchschnittlichen Massen der Cladoceren (GIC bzw. MCM) können Hinweise auf "Top-Down" Effekte durch Fische geben. Hierbei ist allerdings zu berücksichtigen, dass die Größenstruktur des Zooplanktons auch vom Nahrungsangebot beeinflusst wird. Im aktuellen Untersuchungsjahr fällt auf, dass die Seen mit hohem GIC im Sommer (> 6 μ g Ind. und damit über der Masse einer 1 mm langen Daphnie) selten sind. In nur 3 der untersuchten Seen liegt der GIC > 6 μ g Ind. Besonders erstaunlich ist der vergleichsweise hohe GIC im Gr. Binnensee und im Neversdorfer See, in denen (als eutrophe bis polytrophe Seen) eher kleine Filtrierer zu erwarten wären. Extrem kleine Cladoceren und damit wenig effektive Filtrierer finden sich im Vierersee und dem Pinnsee (Abb. 45).



Abb. 45: Mittlerer Cladoceren Größenindex (GIC bzw. MCM) im Sommer 2013 in Seen S.-H. (Juli, August).

Beziehung Zooplankton / Phytoplankton

Das Z / P-total im Sommer ist in der Mehrzahl der Seen niedrig; in 10 von 14 Messstellen \leq 20 % d⁻¹, in 4 davon < 10 % d⁻¹. Extrem niedrig ist das Z / P und damit der Umsatz von Phytoplankton- in Zooplankton-Masse im Pinnsee; hier liegt der Sommerwert bei < 1 % d⁻¹. Erstaunlich ist das hohe Z / P im Gr. Binnensee (mit ca. 100 % d⁻¹), wobei der Mittelwert stark vom Juliwert geprägt wird. Noch vergleichsweise gute Umsatz von Phytoplankton- in Zooplankton-Masse zeigen die Seen Bültsee, Gr. Plöner See und insbesondere der Behlendorfer See (Abb. 46).

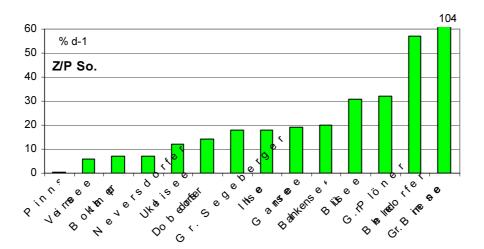


Abb. 46: Reihung der Seen nach dem Verhältnis von Zooplankton zu Phytoplankton-Masse; Mittel im Sommer (Seen S.-H. 2013).

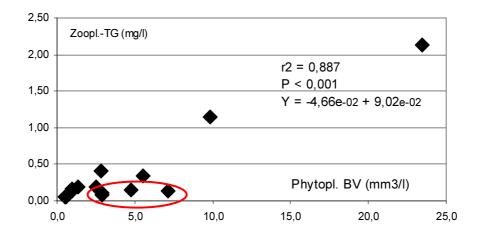


Abb. 47: Phytoplankton-Biovolumen vs. Zooplankton-Trockenmasse (Pearson-Korrelation). Mittel über die Vegetationsperiode (Seen S.-H. 2013). Rot eingekreist die Punkte für Pinnsee, Vierersee und Ukleisee.

Vergleicht man die mittleren Phytoplanktonmassen (Biovolumina) mit den Zooplanktonmassen (Trockengewichten), so ergibt sich ein signifikant positiver Zusammenhang (Abb. 47). In Seen mit hoher Phytoplanktonmasse ist zumindest tendenziell auch eine hohe Zooplanktonmasse vorhanden. Etwas aus der Reihe fallen 3 Seen (Pinnsee, Vierersee und Ukleisee), die in der Abbildung rot eingekreist sind. Insbesondere in diesen Seen ist die Zooplanktonmasse im Verhältnis zur Phytoplanktonmasse niedrig. Ebenfalls eine signifikant positive Korrelation ergibt sich zwischen Chlorophyll und Zooplanktonmasse ($r^2 = 0.893$; P > 0.001; y = -4.01e-03 + 1.124e-02).

Eine zusammenfassende Charakterisierung der 14 untersuchten Seen zeigt nochmals Tab. 27. Eine grobe Übereinstimmung mit dem LAWA TI ergeben sich für 5 bzw. 7 Seen (Trockenmasse auf gesamtes Zugvolumen gerechnet bzw. auf 10 m korrigiert). Extreme Abweichungen zwischen dem Z / P Mittelwert und dem Z / P Median ergeben sich für den Bothkamper See, den Pinnsee, den Ukleisee und den Vierersee.

Tab. 27: Zooplankton-Parameter: Zusammenfassende Charakterisierung der Seen 2013. Beachte Abweichungen zwischen Mittel und Median in einigen Seen beim Z/P.

Seen				Behlendorfer	Blankensee	Bothkamper	Bültsee	Dobersdorfer	Garrensee	Großer Binnensee
Probenzahl				7	7	7(+1)	7	8	7	7
Anzahl Taxa	gesamt		N	41	31	35	42	45	36	34
	Rotatoria		N	25	18	19	25	27	20	22
	Cladocera		N	8	8	8	10	9	8	5
	Copepoda		N	8	5	8	7	9	8	7
Abundanz	Rotatoria	Mittel	Ind. L ⁻¹	324,10	1361,00	1933,50	449,60	310,86	411,62	1090,30
		Max.	Ind. L ⁻¹	951	4060	3853	1026	674	1601	2640
	Cladocera	Mittel	Ind. L ⁻¹	18,80	34,10	816,70	25,10	22,54	2,41	169,30
		Max.	Ind. L ⁻¹	61	62	3730	74	63	5	958
	Calanoida	Mittel	Ind. L ⁻¹	1,50	11,60	18,80	3,10	4,62	0,99	13,30
		Max.	Ind. L ⁻¹	3	37	80	5	11	4	42
	Cyclopoida	Mittel	Ind. L ⁻¹	22,5	67,9	153,5	20,5	10,15	5,77	429,3
		Max.	Ind. L ⁻¹	46	168	373	46	18	10	1341
Biomasse TG	Zoopl. gesamt	Mittel	μg L ⁻¹	158,00	408,40	2125,46	133,03	185,03	60,26	1152,10
		Bereich	μg L ⁻¹	74-355	186-852	795-5383	45-211	109-329	25-118	322-2990
	Rotatoria	Mittel	%	7	12	8	13	7	23	9,24
	Cladocera	Mittel	%	50	50	67	42	57	37	36,7
	Calanoida	Mittel	%	4	10	7	11	16	12	4,64
	Cyclopoida	Mittel	%	39	29	19	35	20	28	49,32
Größenindex	GIC / MCM	Mittel	μg Ind. ⁻¹	3,63	5,00	2,75	2,59	4,41	8,14	4,92
		Mittel So.	μg Ind. ⁻¹	4,78	4,8	4,0	3,96	4,05	6,28	6,11
		Bereich	μg Ind. ⁻¹	1,1-5,2	2,2-8,8	1,4-4,6	1,4-4,6	3,0-7,0	4,8-17,1	1,6-12,8
Sonstige	Dreissena	Nachweis		nein	nein	nein	nein	ja	nein	ja
	Chaoborus	Nachweis		ja	Ja	nein	nein	ja	ja	nein
Raubclad.	Leptodora	Nachweis		ja	nein	ja	nein	ja	ja	ja
Z/P-total		Mittel Veg.	% d ⁻¹	44	66	96	36	22	24	47
Z/P-total		Median Veg.	% d ⁻¹	36	66	15	33	15	21	29

Tab. 27 Fortsetzung

Seen				Gr. Plöner	Gr. Segeber- ger	Ihlsee	Neversdorfer See	Pinnsee	Ukleisee	Viererse
Probenzahl				8	7	7	8	7	7	7
Anzahl Taxa	gesamt		N	44	36	42	32	21	42	38
	Rotatoria		N	28	22	28	20	13	22	24
	Cladocera		N	8	8	8	6	5	10	7
	Copepoda		N	8	6	6	6	3	10	7
Abundanz	Rotatoria	Mittel	Ind. L ⁻¹	156,55	316,4	133,88	932	147,07	94,39	178,3
		Max.	Ind. L ⁻¹	667	842	225	4660	432	231	334
	Cladocera	Mittel	Ind. L ⁻¹	9,46	12,1	3,42	7,6	42,71	11,93	7,7
		Max.	Ind. L ⁻¹	38	37	6	22	262	22	24
	Calanoida	Mittel	Ind. L ⁻¹	1,09	3,19	2,1	35,6	0,04	9,72	7,62
		Max.	Ind. L ⁻¹	5	12	4	81	0,2	18	45
	Cyclopoida	Mittel	Ind. L ⁻¹	12,74	37,74	6,91	77,6	13,41	9,11	11,09
	-	Max.	Ind. L ⁻¹	30	120	8	151	60	16	37
Biomasse TG	Zoopl. gesamt	Mittel	μg L ⁻¹	76,42	188,39	56,76	336	137,34	145,17	115,0
	-	Bereich	μg L ⁻¹	12-269	48-382	30-102	121-626	5-443	73-189	12-48
	Rotatoria	Mittel	%	11	8	7	5	5	2	7
	Cladocera	Mittel	%	39	36	38	24	32	44	21
	Calanoida	Mittel	%	9	7	21	33	0,2	36	33
	Cyclopoida	Mittel	%	40	49	34	38	63	18	37
Größenindex	GIC / MCM	Mittel	μg Ind. ⁻¹	2,96	7,14	5,55	11,24	1,66	5,75	2,44
		Mittel So.	μg Ind. ⁻¹	3,25	5,13	5,66	7,58	1,62	3,66	1,15
		Bereich	μg Ind. ⁻¹	1,8-3,9	1,4-17,3	1,2-9,8	5,8-18,6	0,9-2,0	3,6-8,0	0,7-5,
Sonstige	Dreissena	Nachweis		ja	ja	nein	nein	nein	nein	ja
	Chaoborus	Nachweis		ja	nein	ja	ja	ja	ja	ja
Raubclad.	Leptodora	Nachweis		ja	ja	ja	ja	nein	ja	ja
Z/P-total	-	Mittel Veg.	% d ⁻¹	17	34	27	18	34	39	88
Z/P-total		Median Veg.	% d ⁻¹	11	26	21	14	0,4	10	6

7. Literatur

- Arp W. (2005a): Untersuchungen des Phyto- und Zooplanktons schleswig-holsteinischer Seen 2004 Teilbericht: 12 Seen des WRRL-Programms.- LANU Bericht: 1 72 + Anhang.
- Arp W. (2005b): Untersuchungen des Phyto- und Zooplanktons schleswig-holsteinischer Seen 2004 Teilbericht: Dobersdorfer See und Gr. Plöner See.- LANU Bericht: 1 30 + Anhang.
- Arp W. (2005c): Untersuchungen des Phyto- und Zooplanktons schleswig-holsteinischer Seen 2004 Teilbericht: Pinnsee.- LANU Bericht: 1 22 + Anhang.
- Arp, W. & Deneke, R. (2006): Untersuchungen zum Phyto- und Zooplankton schleswig-holsteinischer Seen 2005 gemäß der EU WRRL.- Bericht für das Landesamt für Natur und Umwelt des Landes Schleswig Holstein: 1 201.
- Arp W. & Deneke R. (2007): Untersuchungen des Phyto- und Zooplanktons schleswig-holsteinischer Seen 2006.- Bericht für das Landesamt für Natur und Umwelt des Landes Schleswig Holstein: 1 201.
- Arp, W., Kasten, J. & Maier, G. (2010): Untersuchungen des Phyto- und Zooplanktons schleswigholsteinischer Seen 2009.- LLUR Bericht, 1 170 + Anhang.
- Arp, W., Kasten, J. & Maier, G. (2011): Untersuchungen des Phyto- und Zooplanktons schleswigholsteinischer Seen 2010.- LLUR Bericht, 1 183 + Anhang.
- Arp, W., Kasten, J. & Maier, G. (2012): Untersuchungen des Phyto- und Zooplanktons schleswigholsteinischer Seen 2010.- LLUR Bericht, 1 171 + Anhang.
- Arp, W. & B. Koppelmeyer (2004): Die Burgunderblutalge *Planktothrix rubescens* in Schleswig-Holstein Erste Untersuchungen an drei ausgewählten Seen.- Aus: Rücker, J. & B. Nixdorf (Hrsg.), 2004, Gewässerreport Nr. 8, BTUC-AR 3/2004, ISSN 1434-6834: 61 80.
- Arp, W. & B. Koppelmeyer (2005): Untersuchungen zum ganzjährigen Vorkommen der Burgunderblutalge *Planktothrix rubescens* in drei geschichteten Seen in Schleswig-Holstein.- Deutsche Gesellschaft für Limnologie. Tagungsbericht 2004 in Potsdam: 469 473.
- Arp, W. & Maier, G. (2009): Untersuchungen des Phyto- und Zooplanktons schleswig-holsteinischer Seen 2008.- LLUR Bericht, 1 166 + Anhang.
- Arp, W., J. Kasten & G. Maier (2010): Untersuchungen des Phyto- und Zooplanktons schleswigholsteinischer Seen 2009.- LLUR Bericht, 1 170 + Anhang.
- ATT (1998): Erfassung und Bewertung von Planktonorganismen.- AG Trinkwassertalsperren e.V. Arbeitskreis Biologie, ATT Techn. Inf.. Nr. 7: 1 150.
- Bottrell H.H., Duncan A., Gliwicz Z.M., Grygierek E., Herzig A., Hillbricht-Ilkowska A., Kurasawa H., Larsson P. & Weglenska T. (1976): A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419-456.

- Cronberg, G., G. Lindmark & S. Björk (1988): Mass development of the flagellate Gonyostomum semen (Raphidophyta) in Swedish forest lakes an effect of acidification.- Hydrobiologia 161: 217 236.
- Cummins K.W-, Costa R.R., Rowe R.E., Moshiri G.A. Scanlon R.M. & Zajdel K. (1969): Ecological energetics of a natural population of the predaceous zooplankter *Leptodora kindtii* Focke (Cladocera). Oikos 20: 189-220.
- Deneke, R. (2001): Untersuchungen zum Einfluß des Schichtungsverhaltens (Mixis) auf die Trophie und die Planktonsukzession in eutrophen Seen unter besonderer Berücksichtigung des Klarwasserstadiums im Frühjahr.- Dissertation an der BTU Cottbus: 1 143.
- Dumont H.J., van de Velde I. & Dumont S. (1975): The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75-97.
- Europäische Union (2000): Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik.- Amtblatt der Europäischen Gemeinschaften L 327 vom 22. 12. 2000.- EG WRRL.
- Fastner, J. (1997): Microcystinvorkommen in 55 deutschen Gewässern.- WaBoLu Hefte 4/97: 27 34
- Fastner, J., M. Erhard, W.W. Carmichael, F. Sun, K.L. Rinehart, H. Rönicke & I. Chorus (1999): Characterization and diversity of microcystins in natural blooms and strains of the genera *Microcystis* and *Planktothrix* from german freshwaters.- Arch. Hydrobiol. 145, 2: 147 163.
- Gannon J.E. & Stemberger R.S. (1978): Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Amer. Micros. Soc. 97: 16-35.
- Garton D.W. & Berg D.J. (1990): Occurrence of *Bythotrephes cederstroemi* (Schoedler 1877) in Lake Superior, with evidence of demographic variation within the Great Lakes. J. Great Lakes Res. 16: 148-152.
- Geller W. & Müller H. (1981): The filtration apparatus of Cladocera: Filter mesh-sizes and their implication on food selectivity. Oecologia 49: 316-321.
- Gliwicz Z.M. (1969): Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ecol. Pol. 17: 663-707.
- Heinzel, K. & Ch. Martin (2006): Monitoring der Qualitätskomponente Makrophyten für WRRL und FFH-RL in schleswig-holsteinischen Seen.- Bericht im Auftrag des LANU Schleswig-Holstein: 1 77 + Anhang.
- Huber-Pestalozzi, G. & Fott, B. (1968): Das Phytoplankton des Süßwassers. Systematik und Biologie 3. Teil: Cryptophyceae, Chloromonadophyceae, Dinophyceae.- E. Schweizerbart'sche Verlagsbuchhandlung, 2. Auflage.
- Isaksson, A. (1998): Phagotrophic phytoflagellates in lakes a literature review.- Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 51: 63-90

- Jeppesen E., Jensen J.P., Søndergaard M. Lauridsen T, Pedersen L.J. & Jensen L. (1997): Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151-164.
- Jones, R.I. & V. Ilmavirta (1988): Flagellates in freshwater ecosystems Concluding remarks.- Hydrobiologia, 161: 271-274.
- Karabin A. (1983): Ecological characteristics of lakes in North-Eastern Poland versus their trophic gradient. VII. Variations in the quantitative and qualitative structure of the pelagic zooplankton (Rotatoria and crustacean) in 42 lakes. Ekol. Pol. 31: 383-409.
- Kasprzak, P., F. Gervais, R. Adrian, W. Weiler, R. Radke, I. Jäger, S. Riest, U. Siedel, B. Schneider, M. Böhme, R. Eckmann & N. Walz (2000): Trophic characterisation, pelagic food web structure and comparison of two mesotrophic lakes in Brandenburg (Germany). Internat. Rev. Hydrobiol. 85: 167 189.
- Kasten, J. & U. Michels (2008): Untersuchung des Phyto- und Zooplanktons in schleswigholsteinischen seen 2007.- Bericht für das Landesamt für Natur und Umwelt des Landes Schleswig Holstein: 1 – 173.
- Kiefer, F. & Fryer, G. (1978):. Copepoda. In: Das Zooplankton der Binnengewässer 2. Teil. E. Schweizerbart'sche Verlagsbuchhandlung; Nägele und Obermiller: 208 pp.
- Kusber, W.-H. (2003): Typification of the four European species of *Gonyostomum (Raphidophyceae)* and first records of *G. depressum* from NE Germany Wildenowia 33: 467 475.
- Lampert W. & Schober U. (1980): The importance of "threshold" food concentrations. Am. Soc. Limnol. Oceanogr. Spec. Symp. 3: 264-267.
- Lampert W. (1988): The relative importance of food limitation and predation in the seasonal cycle of two *Daphnia* Species. Verh. Internat. Verein. Limnol. 23: 713-718.
- LANU (1996): Der Ihlsee. Bericht über Zustand und Belastungsquellen.- Bericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein: 1 64 + Anhang.
- LANU (1997): Seenkurzprogramm 1994: Borgdorfer See, Gr. Pönitzer See, Grebiner See, Stocksee, Suhrer See, Vierer See.- Bericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein: 1 133.
- LANU (1998): Seenkurzprogramm 1998: Bordesholmer See, Bültsee, Gammelunder See, Owschlager See, Schülldorfer See, Winderatter See, Wittensee.- Bericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein, B50: 1 109 + Anhang.
- LANU (2001a): Zustand und Belastungsquellen Gr. Plöner See.- Bericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein: 1 124.
- LANU (2001): Seenkurzprogramm 1998: Bordesholmer See, Bültsee, Gammellunder See, Owschlager See, Schüldorfer See, Winderatter See, Wittensee.- Bericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein: 1 165.
- LANU (2002): Seenkurzprogramm 1999/2000: Einfelder See, Garrensee, Holzsee, Kleiner Pönitzer See, Schierensee (GGebin), Trammer See, Tresdorfer See, Wielener See.- Bericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein: 1 211.

- LANU (2006): Seen an der Nordsee- und Ostseeküste Schleswig-Holsteins.- Bericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein, B 56: 1 108 + Anhang.
- LAWAKÜ (1982): Seenbericht Bothkamper See.- Bericht des Landesamtes für Wasserhaushalt und Küsten Schleswig-Holstein, B17: 1 35 + Anhang.
- LAWAKÜ (1993): Die Seen der oberen Schwentine.- Bericht des Landesamtes für Wasserhaushalt und Küsten Schleswig-Holstein: 1 199 + Anhang.
- LAWAKÜ (1995): Der Große Segeberger See: Bericht über die Untersuchung des Zustandes des Der Großen Segeberger Sees ez. 1989 bis Dez. 1990.- Bericht des Landesamtes für Wasserhaushalt und Küsten Schleswig-Holstein: 1 92 + Anhang.
- LAWA (1999). Gewässerbewertung stehende Gewässer Vorläufige Richtlinie für eine Erstbewertung von natürlich entstandenen Seen nach trophischen Kriterien 1998.- LAWA, Schwerin: 1 74.
- Maier G. (1996): Copepod communities in lakes of varying trophic degree. Arch. Hydrobiol. 136: 455-465.
- Maier G. (2007): Basisuntersuchungen zum Thema: Standardisierung von Zooplankton- Probenahme und Auswertung. Bericht LUBW: 104 pp.
- Mathes, J., G. Plambeck & J. Schaumburg (2005): Die Typisierung der Seen in Deutschland zur Umsetzung der EG-Wasserrahmenrichtlinie.- Limnologie aktuell Band 11: Typologie, Bewertung und Management von Oberflächengewässern, Stand der Forschung zur Umsetzung der EG-Wasserrahmenrichtlinie: 28 120.
- McCauley E. (1984): The estimation of the abundance and biomass of zooplankton in samples. In: A manual methods for the assessment of secondary productivity in fresh waters (eds. Downing J.A. & Rigler F.H.). IBP Handbook 17. Blackwell Scientific Publications. Oxford, London, Edinbugh, Boston, Melbourne, pp. 228-265.
- Mischke, U, Riedmüller, U., Hoehn, E. & B. Nixdorf (2008): Praxistest zur Bewertung von Seen anhand des Phytoplanktons gemäß EU-WRRL. Endbericht zum LAWA-Projekt (O 5.05). In: Mischke, U. & B. Nixdorf (2008): Gewässerreport (Nr. 10): Bewertung von Seen mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie, BTUC-AR 2/2008, ISBN 978-3-940471-06-2: 7 115.
- Mischke, U., Hoehn, E. & U. Riedmüller (2009): Feinabstimmungsprojekt zum deutschen Bewertungsverfahren für Phytoplankton in Seen zur Umsetzung der EU-Wasserrahmenrichtlinie.- Abschlussbericht LAWA O 9.08 Phyto-See-Index Feinabstimmung: 1 80.
- Mischke, U. & B. Nixdorf (Hrsg., 2008): Gewässerreport (Nr. 10): Bewertung von Seen mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie, BTUC-AR 2/2008, ISBN 978-3-940471-06-2.
- Nixdorf, B., M. Hemm, A. Hoffmann & P. Richter (2001) Dokumentation von Zustand und Entwicklung der wichtigsten Seen Deutschlands, Teil 1 Schl. Holstein.- Abschlussbericht F&E Vorhaben FKZ 299 24 274. Im Auftrag des UBA.

- Nixdorf, B., Hoehn, E., Mischke, U., Rücker, J., Schönfelder, I. & M. Bahnwart (2008): Anforderungen an Probenahme und Analyse der Phytoplanktonbiozönosen in Seen zur ökologischen Bewertung gemäß der EU-WRRL. In: Mischke, U. & B. Nixdorf (2008): Gewässerreport (Nr. 10): Bewertung von Seen mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie, BTUC-AR 2/2008, ISBN 978-3-940471-06-2: 147 184.
- Padisak, J. & R. Adrian (1999): Biovolumen.- In W. v. Tümpling & G. Friedrich (Hrsg.) (1999): Biologische Gewässeruntersuchung. Methoden der biologischen Wasseruntersuchung, Band 2. G. Fischer Verlag Jena: 1 545.
- Pauli, H.-R. (1989): A new method to estimate individual dry weights of rotifers.- Hydrobiologia 186/187: 355-361.
- Plambeck, G. (2013). Die Restaurierung des Behlendorfer Sees.- Vortrag beim workshop "Seentherapie" am Arendsee, März 2013.
- Reynolds, C.S. (1984): Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology 14: 111 142.
- Riedmüller, U., E. Hoehn, U. Mischke, R. Deneke & G. Maier (2013): Ökologische Bewertung von natürlichen, künstlichen und erheblich veränderten Seen mit der Biokomponente Phytoplankton nach den Anforderungen der EU-Wassererahmenrichtlinie.- Abschlussbericht für das LAWA-Projekt Nr. O 4.10 (Mai 2013): 1 153.
- Schönfelder, I. 2004: Anwendung und Validierung von Indizes zur Bewertung von Seen gemäß EU-Wasserrahmenrichtlinie auf der Basis von Kieselalgen aus dem Profundal Schleswig-Holsteinischer Seen. Unveröffentlichte Studie im Auftrag des Landesamtes für Natur und Umwelt Schleswig-Holstein, 1-35 + Anhang.
- Schönfelder, I. 2006: Anpassung des Bewertungsmoduls Diatomeenindex DI-PROF auf die Subytpen der Seen in Schleswig-Holstein. Unveröffentlichte Studie im Auftrag des Landesamtes für Natur und Umwelt Schleswig-Holstein, 1-41.
- Schwoerbel J. (1994): Methoden der Hydrobiologie Süßwasserbiologie. Gustav Fischer Verlag, Stuttgart, Jena, 368 pp.
- Speth & Speth (2001): Untersuchung des Phyto- und Zooplanktons aus 21 Seen Schleswig-Holsteins. WRRL- Sonderprogramm 2001. LANU Bericht, 60 pp.
- Speth & Speth (2002): Untersuchung des Phyto- und Zooplanktons aus 13 Seen Schleswig-Holsteins. WRRL-Sonderprogramm 2002. LANU Bericht, 52 pp.
- Spieker J., Müller U., Rühmann M, & Göring H. (2004a): Seenmonitoring Pinnsee. Kurzbericht: Phyto- und Zooplankton. LANU Bericht.
- Spieker J., Müller U., Rühmann M, & Göring H. (2004b): Seenmonitoring Dobersdorfer See, Großer Plöner See. Kurzbericht: Phyto- und Zooplankton. LANU Bericht, 11pp.
- Stemberger R. (1979): A guide to rotifers of the Laurentian Great Lakes. U.S. EPA publication: EPA/600/4-79-021. Washington DC., 185 pp.

- Stich, B., Maier, G. & A. Hoppe (2012) Projekt Zooplankton Probenahme Bericht der Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg. Institut für Seenforschung (ISF). 35 pp.
- Stuhr, J. (2000): Seenkurzprogramm 2000: Die Ufer- und Unterwasservegetation des Bottschlotter Sees, des Einfelder Sees, des Fastensees, des Großen Binnensees, des Neustädter Binnenwassers, des Pinnsees, des Sehlendorfer Binnensees und des Wenkendorfer Sees.- Gutachten für das Landesamt für Natur und Umwelt des Landes Schleswig-Holstein: 1 112.
- Stuhr, J. (2007): Monitoring der Qualitätskomponente Makrophyten für die WRRL- und FFH-Richtlinie in schleswig-holsteinischen Seen 2007.- Bericht für das Landesamt für Natur und Umwelt des Landes Schleswig-Holstein, im Rahmen des WRRL-Programms 2007: 1 187 + Anhang.
- Stuhr, J., van de Weyer, K. et. al. (2013): Monitoring der Qualitätskomponente Makrophyten für die WRRL- und FFH-Richtlinie in schleswig-holsteinischen Seen. Vegetation des Behlendorfer Sees, des Bültsees, des Garrensees, des Großen Plöner Sees, des Großen Pönitzer Sees, des Ihlsees (Krs. Segeberg), des Schluensees und des Wittensees im Auftrag des Landesamtes für Landwirtschaft, Umwelt und ländliche Räume. Kiel. P214 + Anhang + 1 CD.
- TGL (1982): Fachbereichsstandard. Nutzung und Schutz der Gewässer, stehende Binnengewässer; Klassifizierung. TGL 27885/01.- Ministerium für Umweltschutz und Wasserwirtschaft d. DDR, Berlin: 1 16.
- Tümpling v. W. & Friedrich G. (1999): Methoden der Biologischen Wasseruntersuchung; Bd. 2, Biologische Gewässeruntersuchung. Gustav Fischer, Jena, Stuttgart, Lübeck, Ulm: 541 pp.
- Walz N., Sarma S.S.S. & Benker U. (1995): Egg size in relation to body size in rotifers: an indication of reproductive strategy? Hydrobiologia 313/314: 165-170.

8. Verwendete Bestimmungsliteratur Phyto- und Zooplankton

Phytoplankton

- Anagnostidis, K. & J. Komárek (1985): Modern approach to the classification system of cyanophytes 1 Introduction.- Archiv für Hydrobiologie Supplement 71 (1/2): 291 302.
- Anagnostidis, K. & J. Komárek (1988): Modern approach to the classification system of cyanophytes 3 Oscillatoriales.- Archiv für Hydrobiologie Supplement 80 (1-4): 327 472.
- Bourrelly, P. (1972): Les Algues vertes.- Éditions N. Boubée & Cie. Paris : 1 569.
- Ettl, H. (1983): Xanthophyceae, Teil 1.- Süsswasserflora von Mitteleuropa, Bd. 3. Gustav Fischer Verlag. Stuttgart, New York: 1 515.
- Ettl, H. (1983): Chlorophyta I Phytomonadina.- Süsswasserflora von Mitteleuropa, Bd. 9. Gustav Fischer Verlag. Stuttgart, New York: 1 530.
- Förster, K. (1982): Conjugatophyceae Zygnematales und Desmidiales (excl. Zygnemataceae).- E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller). Stuttgart, Germany: 1 543.

- Geitler, L. (1932): Cyanophyceen.- Dr. L. Rabenhorst's Krytogamen-Flora von Deutschland, Österreich und der Schweiz. 2. Auflage. Akademische Verlagsgesellschaft m.b.H. Leipzig: 1 1179.
- Huber-Pestalozzi, G. & Fott, B. (1968): Das Phytoplankton des Süßwassers. Systematik und Biologie 3. Teil: Cryptophyceae, Chloromonadophyceae, Dinophyceae.- E. Schweizerbart'sche Verlagsbuchhandlung, 2. Auflage.
- John, D. M., B.A. Whitton, & A.J. Brook (2003) :The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestical algae.- University Press, Cambridge. Cambridge: 1 702
- Kadlubowska, J.Z. (1984): Conjugatophyceae I Chlorophyta VIII, Zygnemales.- Süsswasserflora von Mitteleuropa, Bd. 16. Gustav Fischer Verlag. Stuttgart, New York: 1 532.
- Kasten, J. (2002): Die Dynamik der Phytoplanktongemeinschaften einer saisonal überfluteten Fluß-Auern-Landschaft (Unteres Odertal Brandenburg).- Dissertation an der Freien Universität Berlin. Lehmanns Fachbuchhandlung Berlin (ISBN 3-936427-00-3): 1 255.
- Komárek, J. & B. Fott (1983): Chlorophyceae (Grünalgen) Ordnung: Chlorococcales. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller). Stuttgart, Germany.
- Komárek, J. & K. Anagnostidis (1998): Cyanoprokaryota 1. Teil: Chroococcales.- Süsswasserflora von Mitteleuropa, Bd. 19/1. Gustav Fischer Verlag. Jena, Stuttgart, Lübeck, Ulm: 1 548.
- Komárek, J. (1999): Übersicht der planktischen Blaualgen im Einzugsgebiet der Elbe.- Internationale Kommission zum Schutz der Elbe. Mageburg: 1 54 + Anhang.
- Komárek, J. & K. Anagnostidis (2005): Cyanoprokaryota 1. Teil: Oscillatoriales Süsswasserflora von Mitteleuropa, Bd. 19/2. Elsevier GmbH, München: 1 759.
- Komárek, J. (2013): Cyanoprokaryota 3. Teil/Part3: Heterocytous Genera Süsswasserflora von Mitteleuropa, Bd. 19/3. Elsevier GmbH, München: 1 1130..
- Krammer, K. & H. Lange-Bertalot (1986): Bacillariophyceae 1. Teil: Naviculaceae.- Gustav Fischer Verlag. Stuttgart, New York: 1 876.
- Krammer, K. & H. Lange-Bertalot (1988): Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae.- Gustav Fischer Verlag. Stuttgart, New York: 1 596.
- Krammer, K. & H. Lange-Bertalot (1991): Bacillariophyceae 4. Teil: Achanthacaeae. Gustav Fischer Verlag. Stuttgart, Jena: 1 437.
- Krammer, K. & H. Lange-Bertalot (1991): Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag. Stuttgart, Jena: 1 576.
- Krienitz, L. (1990): Coccale Grünalgen der mittleren Elbe. Limnologica 21 (1): 165 231.
- Lenzenweger, R. (1996): Desmidiaceenflora von Österreich, Teil 1.- Bibliotheca Phycologia, Bd. 101. J. Cramer in der Gebrüder Bornträger Verlagsbuchhandlung Berlin, Stuttgart: 1 162.
- Lenzenweger, R. (1997): Desmidiaceenflora von Österreich, Teil 2.- Bibliotheca Phycologia, Bd. 102. J. Cramer in der Gebrüder Bornträger Verlagsbuchhandlung Berlin, Stuttgart: 1 216.

- Lenzenweger, R. (1999): Desmidiaceenflora von Österreich, Teil 3.- Bibliotheca Phycologia, Bd. 104. J. Cramer in der Gebrüder Bornträger Verlagsbuchhandlung Berlin, Stuttgart: 1 218.
- Meffert, M.-E. & H.-J. Krambeck (1977): Planktonic blue-green algae of the *Oscillatoria redekei* group.- Archiv für Hydrobiologie 79(2): 149 171.
- Meffert, M.-E., R. Oberhäuser, & J. Overbeck (1981): Morphololgy and Taxonomy of *Oscillatoria redekei* (Cyanophyta).- British phycological Journal 16: 107 114.
- Meffert, M.-E. (1988): *Limnothrix* MEFFERT nov. gen. Archiv für Hydrobiologie Supplement 80 (1-4): 269 276.
- Popovský, J. & L.A. Pfiester (1990): Dinophyceae.- Süsswasserflora von Mitteleuropa, Bd. 6. Gustav Fischer Verlag. Stuttgart, Jena: 1 272.
- Starmach, K. (1985): Chrysophyceae und Haptophyceae.- Süsswasserflora von Mitteleuropa, Bd. 1. Gustav Fischer Verlag. Stuttgart, New York: 1 515.

Zooplankton

- Benzie, J. A. H., 2005. Cladocera: The Genus *Daphnia* (including *Daphniopsis*) (Anomopoda: Daphnidae). In H. J. F. Dumont (Co.-Ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Vol. 21. Backhuys Publishers, Leiden: 376 pp.
- Breitig, G., 1972. VIII. Mollusken. In H. Bick, G. Breitig, Th. Grospietsch, Ch. Holmquist, H. Löffler, E. Reisinger, A. Ruttner-Kolisko, O. A. Sæther & J. Schwoerbel, 1972. Das Zooplankton der Binnengewässer, 1. Teil. In H.-J. Elster & W. Ohle, Die Binnengewässer. Vol. 26/1. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart: 286-291.
- Einsle, U., 1993. Crustacea. Copepoda. Calanoida und Cyclopoida. In J. Schwoerbel & P. Zwick (Hrsg.), Süßwasserfauna von Mitteleuropa. Bd. 8/4-1. G. Fischer Verlag, Stuttgart, Jena, New York: 208 pp.
- Einsle, U., 1996. Copepoda: Cyclopoida. Genera Cyclops, Megacyclops, Acanthocyclops. In H. J. Dumont (Co.-Ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Vol. 10. SPB Academic Publishing, Amsterdam: 82 pp.
- Flößner D., 1972. Kiemen- Blattfüßer, Branchiura Fischläuse, Branchiura. In: Dahl, TWD 60: 501 pp.
- Flößner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden: 428 pp.
- Herbst H.V. (1976): Blattfußkrebse. In: Einführung in die Kleinlebewelt. Kosmos-Verlag Franckh-Stuttgart: 130 pp.
- Holmquist, Ch., 1972. V. Mysidacea. In H. Bick, G. Breitig, Th. Grospietsch, Ch. Holmquist, H. Löffler, E. Reisinger, A. Ruttner-Kolisko, O. A. Sæther & J. Schwoerbel. Das Zooplankton der Binnengewässer, 1. Teil. In H.-J. Elster & W. Ohle, Die Binnengewässer. Vol. 26/1. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart: 247-256.

- Kiefer F., 1973. Ruderfußkrebse. In: Einführung in die Kleinlebewelt. Kosmos-Verlag Franckh-Stuttgart: 99 pp.
- Kiefer F. & Fryer G., 1978. Copepoda. In: Das Zooplankton der Binnengewässer 2. Teil. E. Schweizerbart'sche Verlagsbuchhandlung; Nägele und Obermiller: 208 pp.
- Koste W., 1978: Rotatoria: Die Rädertiere Mitteleuropas Bd. 1. und 2. Gebrüder Bornträger, Berlin, Stuttgart: 673 pp bzw. 234 Tafeln.
- Korovchinsky, N. M., 1992. Sididae and Holopediidae. (Crustacea: Daphniiformes). In H. J. Dumont (Co.-Ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Vol. 3. SPB Academic Publishing, The Hague: 82 pp.
- Lieder, U., 1996. Crustacea. Cladocera/Bosminidae. In J. Schwoerbel & P. Zwick (Hrsg.), Süßwasserfauna von Mitteleuropa. Bd. 8/2-3. G. Fischer Verlag, Stuttgart, Jena, Lübeck, Ulm: 80 pp.
- Nogrady, T. & H. Segers (Eds), 2002. Rotifera. Vol. 6: Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia. In H. J. Dumont (Co.-Ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Vol. 18. Backhuys Publishers, Leiden: 264 pp.
- Nogrady, T., R. Pourriot & H. Segers, 1995. Rotifera. Volume 3: Notommatidae and Scaridiidae. In T. Nogrady (Ed.), Rotifera. In H. J. Dumont (Co.-Ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Vol. 8. SPB Academic Publishing, Amsterdam: 248 pp.
- Orlova-Bienkowskaja, M. Y., 2001. Cladocera: Anomopoda. Daphniidae: genus Simocephalus. In H. J. Dumont (Co.-Ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Backhuys Publishers, Vol. 17. Leiden: 130 pp.
- Pontin, R. M., 1978. A key to the Freshwater Planktonic and semi-planktonic Rotifera of the British Isles. Scientific Publication. Vol. 38. Freshwater Biological Association: 178 pp.
- Ruttner-Kolisko, A., 1972. III. Rotatoria. In H. Bick, G. Breitig, Th. Grospietsch, Ch. Holmquist, H. Löffler, E. Reisinger, A. Ruttner-Kolisko, O. A. Sæther & J. Schwoerbel. Das Zooplankton der Binnengewässer, 1. Teil. In H.-J. Elster & W. Ohle, Die Binnengewässer. Vol. 26/1. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart: 99-234.
- Smirnov, N. N., 1996. Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the World. In H. J. F. Dumont (Co.-Ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Vol. 11. SPB Academic Publishing, Amsterdam: 197 pp.
- Voigt, M. & W. Koste, 1978. Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta. Bd. I, Textband. 2. Aufl. Gebrüder Bornträger, Berlin, Stuttgart: 673 pp.
- Voigt, M. & W. Koste, 1978. Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta. Bd. II, Tafelband. 2. Aufl. Gebrüder Bornträger, Berlin, Stuttgart: 234 T.

9. Danksagung

Einen Dank an Frau Dr. Mandy Bahnwart, Frau Angelika König und Frau Ulrike Hamann vom Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig – Holstein für Ihre Unterstützung während des gesamten Projektes.

Zu danken ist Herrn Bernd Koppelmeyer für die Erstellung der jahreszeitlichen Grafiken zum Phyto- und Zooplankton und Frau Dr. Ute Mischke für Ihre Hilfe bei der Anwendung der neuen software PHYTOSEE 5.1 für die PSI-Ermittlung.

10. Anschrift der Verfasser

Dr. Wolfgang Arp LimPlan Gewässer- und Landschafts- ökologie Otawistr. 19 13 351 Berlin	apl. Prof. Dr. Gerhard Maier Büro fürGewässerökologie Brucknerstr. 23 89 250 Senden	Ute Michels AquaLytis Karl Marx-Straße 119 15745 Wildau
Tel.: (030) 450 274 18 Fax: (030) 450 274 19	Tel.: (07307) 955762	Tel.: (03375) 246366
w.arp@limplan.de	gmaier-senden@t-online.de	utemichels@aqualytis.com

11. Anhang

11.1 Messstellen, Probenahmetermine und Probenahmetiefen der analysierten Phytoplankton-Lugolproben des Freiwassers 2013

OFF N	E O Nome	MO No	M. Name 4	Datum Pro-	Probentiefe
SEE-Nr	F_S_Name	MS-Nr	M_Name1	benahme	(0 – x m)
0019	Behlendorfer See	129027	Behlendorfer See, tiefste Stelle	22.04.13	6
0019	Defilefidorier See	129021	Stelle	21.05.13	6
				13.06.13	5
				15.07.13	4
				08.08.13	5
				02.09.13	5
				07.10.13	6
0026	Blankensee	129219	Blankensee (tiefste Stelle)	17.04.13	1
				15.05.13	1
				24.06.13	1
				23.07.13	1
				22.08.13	1
				24.09.13	1
				23.10.13	1
0040	Dethicement Coo	100001	Bothkamper See, tiefste	20.04.42	2
0040	Bothkamper See	129081	Stelle	29.04.13 27.05.13	2 2
				27.05.13	2
				24.07.13	2
				20.08.13	1
				17.09.13	1
				23.10.13	1
			Bothkamper See, östlich		
		129255	Bissee	29.04.13	2
				27.05.13	2
				20.08.13	1
				17.09.13	1
				23.10.13	1
0050	Bültsee	129004	Bültsee, tiefste Stelle	23.04.13	6
				22.05.13	6
				20.06.13	6
				18.07.13	6
				14.08.13 11.09.13	6
				15.10.13	6
			Dobersdorfer See vor	10.10.13	U
0062	Dobersdorfer See	129009	Schlesen, tiefste Stelle	16.04.13	6
	_ = = = = = = = = = = = = = = = = = = =	12000		15.05.13	6
				12.06.13	6
				10.07.13	6
				07.08.13	6
				12.09.13	6
				09.10.13	6

SEE-Nr	F_S_Name	MS-Nr	M_Name1	Datum Pro- benahme	Probentiefe (0 – x m)
				05.11.13	6
0090	Garrensee	129002	Garrensee, tiefste Stelle	06.05.13	10
				04.06.13	10
				04.07.13	7
				31.07.13	5
				27.08.13	10
				25.09.13	8
				28.10.13	8
			Großer Binnensee, tiefste		
0109	Großer Binnensee	129172	Stelle	25.04.13	2
				29.05.13	2
				24.06.13	2
				23.07.13	2
				19.08.13	2
				16.09.13	2
				21.10.13	2
0114	Großer Plöner See	129102	Großer Plöner See, Südteil, tiefste Stelle	15.04.13	10
0114	Gloisel Floriel See	129102	tierste Stelle	16.05.13	10
				10.05.13	8
				11.07.13	6
				06.08.13	5
				04.09.13	10
				08.10.13	10
				04.11.13	10
0.400	Großer Segeberger	400000	Großer Segeberger See,		
0120	See	129008	tiefste Stelle	17.04.13	6
				14.05.13	6
				17.06.13	6
				16.07.13	6
				12.08.13	6
				03.09.13	6
0400	Iblaca Dad Canabana	400050	Unione diafata Challa	10.10.13	6
0169	Ihlsee, Bad Segeberg	129052	Ihlsee, tiefste Stelle	02.05.13	7
				03.06.13	8 7
				01.07.13	
				29.07.13	10 8
				21.08.13 18.09.13	
					10 9
			Navana danfan Oan Gafata	22.10.13	9
0286	Neversdorfer See	129160	Neversdorfer See, tiefste Stelle	07.03.13	6
				18.04.13	6
				23.05.13	6
				18.06.13	6
				17.07.13	6
				15.08.13	6
				10.09.13	6
				17.10.13	6
0305	Pinnsee	129063	Pinnsee, tiefste Stelle	07.05.13	6
				05.06.13	6

SEE-Nr	F_S_Name	MS-Nr	M_Name1	Datum Pro- benahme	Probentiefe (0 – x m)
				02.07.13	6
				30.07.13	6
				28.08.13	6
				24.09.13	6
				30.10.13	6
0425	Ukleisee	129192	Ukleisee, tiefste Stelle	13.05.13	5
				06.06.13	5
				09.07.13	6
				05.08.13	4
				29.08.13	3
				26.09.13	6
				29.10.13	8
0427	Vierer See	129050	Vierer See ,tiefste Stelle	24.04.13	8
				28.05.13	9
				19.06.13	5
				22.07.13	5
				13.08.13	5
•				09.09.13	7
				16.10.13	8

Juli 2014

Arp, Maier & Michels - 166 - Juli 2014

11.2 Messstellen, Probenahmetermine und Probenahmetiefen der analysierten Zooplanktonproben 2013 im Überblick

					MICOLI	
MS NR	M NAME1	DATUM	JAHR	METH.	MISCH- PROBE	PROBEN-
WIO_IVI	M_147 (ME 1	DATION	57 (I II C	IVIL III.	TIEFEN	VOLUMEN
129102	Gr. Plöner See (tiefste Stelle)	15.04.2013	2013	Netzzug	0 - 30 m	235,62 L
129102	Gr. Plöner See (tiefste Stelle)	16.05.2013	2013	Netzzug	0 - 30 m	235,62 L
129102	,	10.06.2013	2013	Netzzug	0 - 30 m	235,62 L
129102		11.07.2013	2013	Netzzug	0 - 30 m	235,62 L
129102	•	06.08.2013	2013	Netzzug	0 - 30 m	235,62 L
129102		04.09.2013	2013	Netzzug	0 - 30 m	235,62 L
129102	Gr. Plöner See (tiefste Stelle)	08.10.2013	2013	Netzzug	0 - 30 m	235,62 L
129102	Gr. Plöner See (tiefste Stelle)	07.11.2013	2013	Netzzug	0 - 30 m	235,62 L
129009	Dobersdorfer See vor Schlesen (tiefste St.)	16.04.2013	2013	Netzzug	0 - 17 m	133,52 L
129009	Dobersdorfer See vor Schlesen (tiefste St.)	15.05.2013	2013	Netzzug	0 - 17 m	133,52 L
129009	Dobersdorfer See vor Schlesen (tiefste St.)	12.06.2013	2013	Netzzug	0 - 17 m	133,52 L
129009	Dobersdorfer See vor Schlesen (tiefste St.)	10.07.2013	2013	Netzzug	0 - 17 m	133,52 L
129009		07.08.2013	2013	Netzzug	0 - 17 m	133,52 L
129009	Dobersdorfer See vor Schlesen (tiefste St.)	12.09.2013	2013	Netzzug	0 - 17 m	133,52 L 133,52 L
129009	Dobersdorfer See vor Schlesen (tiefste St.)	09.10.2013	2013	Netzzug	0 - 17 m	135,52 L 125,67 L
129009	Dobersdorfer See vor Schlesen (tiefste St.)			Netzzug	0 - 10 m	•
129009	Dobersdorfer See vor Schlesen (tiefste St.)	05.11.2013	2013	•	0 - 17 m	133,52 L
	Behlenderfer See (tiefste Stelle)	22.04.2013 21.05.2013	2013	Netzzug		102,1 L 102,1 L
129027	Behlenderfer See (tiefste Stelle)		2013	Netzzug	0 - 13 m	· · · · · · · · · · · · · · · · · · ·
129027	Behlendorfer See (tiefste Stelle)	13.06.2013	2013	Netzzug	0 - 13 m	102,1 L
129027	Behlendorfer See (tiefste Stelle)	15.07.2013	2013	Netzzug	0 - 13 m	102,1 L
129027	Behlendorfer See (tiefste Stelle)	08.08.2013	2013	Netzzug	0 - 13 m	102,1 L
129027	Behlendorfer See (tiefste Stelle)	02.09.2013	2013	Netzzug	0 - 13 m	102,1 L
129027	Behlendorfer See (tiefste Stelle)	07.10.2013	2013	Netzzug	0 - 13 m	102,1 L
129063	,	07.05.2013	2013	Netzzug	0 - 7 m	55 L
129063	Pinnsee (tiefste Stelle)	05.06.2013	2013	Netzzug	0 - 7 m	55 L
129063		02.07.2013	2013	Netzzug	0 - 7 m	55 L
129063		30.07.2013	2013	Netzzug	0 - 7 m	55 L
129063	Pinnsee (tiefste Stelle)	28.08.2013	2013	Netzzug	0 - 7 m	55 L
129063		24.09.2013	2013	Netzzug	0 - 7 m	55 L
129063	Pinnsee (tiefste Stelle)	30.10.2013	2013	Netzzug	0 - 7 m	55 L
120001	Pathkampar Cas (tiefata Stalla)	20 04 2012	2012	Cohönfor	12 x 2,5	20.1
129081	Bothkamper See (tiefste Stelle)	29.04.2013	2013	Schöpfer	12 x 2,5	30 L
129081	Bothkamper See (tiefste Stelle)	27.05.2013	2013	Schöpfer	12 X 2,3	30 L
120001	Delinamper dee (lierate diene)	27.00.2010	2010	Corropici	12 x 2,5	00 2
129081	Bothkamper See (tiefste Stelle)	27.06.2013	2013	Schöpfer	L, C	30 L
	,			.	12 x 2,5	
129081	Bothkamper See (tiefste Stelle)	24.07.2013	2013	Schöpfer	L	30 L
					12 x 2,5	
129081	Bothkamper See (tiefste Stelle)	20.08.2013	2013	Schöpfer	L	30 L
120001	Pathkampar Cas (tiefata Stalla)	17.09.2013	2012	Cohönfor	12 x 2,5	20.1
129081	Bothkamper See (tiefste Stelle)	17.09.2013	2013	Schöpfer	12 x 2,5	30 L
129081	Bothkamper See (tiefste Stelle)	23.10.2013	2013	Schöpfer	12 x 2,0	30 L
0001		_00.2010	_010	23.10p101	12 x 2,5	55 -
129255	Bothkamper See (östl. Bissee)	17.09.2013	2013	Schöpfer	L	30 L
129002	Garrensee (tiefste Stelle)	06.05.2013	2013	Netzzug	0 - 21 m	164,9 L

MS_NR	M_NAME1	DATUM	JAHR	METH.	MISCH- PROBE TIEFEN	PROBEN- VOLUMEN
129002	Garrensee (tiefste Stelle)	04.06.2013	2013	Netzzug	0 - 21 m	164,93 L
129002	Garrensee (tiefste Stelle)	04.07.2013	2013	Netzzug	0 - 21 m	164,9 L
129002	Garrensee (tiefste Stelle)	31.07.2013	2013	Netzzug	0 - 21 m	164,9 L
129002	Garrensee (tiefste Stelle)	27.08.2013	2013	Netzzug	0 - 21 m	164,93 L
129002	Garrensee (tiefste Stelle)	25.09.2013	2013	Netzzug	0 - 21 m	164,9 L
129002	Garrensee (tiefste Stelle)	28.10.2013	2013	Netzzug	0 - 21 m	164,9 L
129052	Ihlsee (tiefste Stelle)	02.05.2013	2013	Netzzug	0 - 20 m	157,1 L
129052	Ihlsee (tiefste Stelle)	03.06.2013	2013	Netzzug	0 - 20 m	157,1 L
129052	Ihlsee (tiefste Stelle)	01.07.2013	2013	Netzzug	0 - 20 m	157,1 L
129052	Ihlsee (tiefste Stelle)	29.07.2013	2013	Netzzug	0 - 19 m	149,2 L
129052	Ihlsee (tiefste Stelle)	21.08.2013	2013	Netzzug	0 - 20 m	157,1 L
129052	Ihlsee (tiefste Stelle)	18.09.2013	2013	Netzzug	0 - 20 m	157,1 L
129052	Ihlsee (tiefste Stelle)	22.10.2013	2013	Netzzug	0 - 20 m	157,1 L
129050	Vierersee (tiefste Stelle)	24.04.2013	2013	Netzzug	0 - 17 m	133,5 L
129050	Vierersee (tiefste Stelle)	28.05.2013	2013	Netzzug	0 - 17 m	133,5 L
129050	Vierersee (tiefste Stelle)	19.06.2013	2013	Netzzug	0 - 17 m	133,5 L
129050	Vierersee (tiefste Stelle)	23.07.2013	2013	Netzzug	0 - 17 m	133,5 L
129050	Vierersee (tiefste Stelle)	13.08.2013	2013	Netzzug	0 - 17 m	133,5 L
	Vierersee (tiefste Stelle)	09.09.2013	2013	Netzzug	0 - 17 m	133,5 L
-	Vierersee (tiefste Stelle)	16.10.2013	2013	Netzzug	0 - 17 m	133,5 L
	Bültsee (tiefste Stelle)	23.04.2013	2013	Netzzug	0 - 12 m	94,25 L
-	Bültsee (tiefste Stelle)	22.05.2013	2013	Netzzug	0 - 12 m	94,25 L
-	,	20.06.2013	2013	Netzzug	0 - 12 m	94,25 L
—	Bültsee (tiefste Stelle)	18.07.2013	2013	Netzzug	0 - 11 m	86,4 L
129004	Bültsee (tiefste Stelle)	14.08.2013	2013	Netzzug	0 - 12 m	94,25 L
-	Bültsee (tiefste Stelle)	11.09.2013	2013	Netzzug	0 - 12 m	94,25 L
-	Bültsee (tiefste Stelle)	15.10.2013	2013	Netzzug	0 - 12 m	94,25 L
129008	Gr. Segeberger (tiefste Stelle)	17.04.2013	2013	Netzzug	0 - 9 m	70,69 L
129008	Gr. Segeberger (tiefste Stelle)	14.05.2013	2013	Netzzug	0 - 12 m	94,25 L
129008	Gr. Segeberger (tiefste Stelle)	17.06.2013	2013	Netzzug	0 - 12 m	94,25 L
129008	Gr. Segeberger (tiefste Stelle)	16.07.2013	2013	Netzzug	0 - 12 m	94,25 L
129008	Gr. Segeberger (tiefste Stelle)	12.08.2013	2013	Netzzug	0 - 12 m	94,25 L
129008		03.09.2013	2013	Netzzug	0 - 12 m	94,25 L
129008		10.10.2013	2013	Netzzug	0 - 9 m	70,69 L
	,				12 x 2,5	·
129172	Gr. Binnensee (tiefste Stelle)	25.04.2013	2013	Schöpfer	L	30 L
					12 x 2,5	
129172	Gr. Binnensee (tiefste Stelle)	29.05.2013	2013	Schöpfer	L	30 L
129172	Gr. Binnensee (tiefste Stelle)	24.06.2013	2013	Schöpfer	12 x 2,5 L	30 L
129172	Gr. Binnensee (tiefste Stelle)	23.07.2013	2013	Schöpfer	12 x 2,5 L	30 L
	, ,				12 x 2,5	
129172	Gr. Binnensee (tiefste Stelle)	19.08.2013	2013	Schöpfer	L	30 L
129172	Gr. Binnensee (tiefste Stelle)	16.09.2013	2013	Schöpfer	12 x 2,5 L	30 L
129172	Gr. Binnensee (tiefste Stelle)	21.10.2013	2013	Schöpfer	12 x 2,5	30 L
	Neversdorfer S. (tiefste Stelle)	07.03.2013	2013	Netzzug	0 - 8 m	62,83 L
-	Neversdorfer S. (tiefste Stelle)	18.04.2013	2013	Netzzug	0 - 8 m	62,83 L
	Neversdorfer S. (tiefste Stelle)	23.05.2013	2013	Netzzug	0 - 8 m	62,83 L
123100	Neversdorfer S. (tiefste Stelle)	18.06.2013	2013	Netzzug	0 - 8 m	62,83 L

MS_NR	M_NAME1	DATUM	JAHR	METH.	MISCH- PROBE TIEFEN	PROBEN- VOLUMEN
129160	Neversdorfer S. (tiefste Stelle)	17.07.2013	2013	Netzzug	0 - 8 m	62,83 L
129160	Neversdorfer S. (tiefste Stelle)	15.08.2013	2013	Netzzug	0 - 8 m	62,83 L
129160	Neversdorfer S. (tiefste Stelle)	10.09.2013	2013	Netzzug	0 - 8 m	62,83 L
129160	Neversdorfer S. (tiefste Stelle)	17.10.2013	2013	Netzzug	0 - 8 m	62,83 L
129192	Ukleisee (tiefste Stelle)	13.05.2013	2013	Netzzug	0 - 15 m	117,81 L
129192	Ukleisee (tiefste Stelle)	06.06.2013	2013	Netzzug	0 - 15 m	117,81 L
129192	Ukleisee (tiefste Stelle)	09.07.2013	2013	Netzzug	0 - 15 m	117,81 L
129192	Ukleisee (tiefste Stelle)	05.08.2013	2013	Netzzug	0 - 15 m	117,81 L
129192	Ukleisee (tiefste Stelle)	29.08.2013	2013	Netzzug	0 - 15 m	117,81 L
129192	Ukleisee (tiefste Stelle)	26.09.2013	2013	Netzzug	0 - 15 m	117,81 L
129192	Ukleisee (tiefste Stelle)	29.10.2013	2013	Netzzug	0 - 15 m	117,81 L
129219	Blankensee (tiefste Stelle)	17.04.2013	2013	Schöpfer	12 x 2,5 L	30 L
129219	Blankensee (tiefste Stelle)	15.05.2013	2013	Schöpfer	12 x 2,5 L	30 L
129219	Blankensee (tiefste Stelle)	24.06.2013	2013	Schöpfer	12 x 2,5 L	30 L
129219	Blankensee (tiefste Stelle)	23.07.2013	2013	Schöpfer	12 x 2,5 L	30 L
129219	Blankensee (tiefste Stelle)	22.08.2013	2013	Schöpfer	12 x 2,5 L	30 L
129219	Blankensee (tiefste Stelle)	24.09.2013	2013	Schöpfer	12 x 2,5 L	30 L
129219	Blankensee (tiefste Stelle)	23.10.2013	2013	Schöpfer	12 x 2,5 L	30 L

11.3 Artenlisten Phytoplankton Seen 2013

Die Seen und die pro See erfassten Phytoplanktontaxa sind alphabetisch geordnet.

Behlendorfer See, tiefste Stelle (MST-Nr: 129027)

Behle	ndorte	r See, tiefste Stelle (MST-Nr: 1	29027)
Taxon-			
ID	DV_Nr	TAXONNAME	Autor
1503	8807	Anabaena bergii	Ostenfeld
24	8855	Anabaena lemmermannii	P.G.Richter in Lemmermann
64	8873	Aphanocapsa	Nägeli
72	6050	Asterionella formosa	Hassall
90	7584	Bitrichia chodatii	(Reverdin) Chodat
100	7949	Carteria	Diesing em. Francé
104	7239	Ceratium hirundinella	(O.F.Müller) Dujardin
117	7021	Chlamydomonas	Ehrenberg
135	8113	Chroococcus minutus	(Kützing) Nägeli
139	7983	Chroomonas nordstedtii	Hansgirg
143	7211	Chrysochromulina parva	Lackey
151	7429	Chrysolykos planctonicus	Mack
161	7356	Closterium acutum var. variabile	(Lemmermann) Willi Krieger
184	7214	Coelastrum reticulatum	(Dangeard) Senn
187	8115	Coelosphaerium kuetzingianum	Nägeli
206	7028	Cosmarium	Corda ex Ralfs
200	17162	Cosmarium depressum var. planctonicum	Reverdin
236	7032	Cryptomonas 30-35µm	Ehrenberg
237	7032	Cryptomonas 35-40µm	Ehrenberg
222	7032	Cryptomonas erosa/ovata/phaseolus Cryptomonas marssonii	Ehrenberg Skuja
223 246	7926 8835	Cyanodictyon	Pascher
3002	36000	Cyclotella balatonis	PANTOCSEK
252	6929	Cyclotella comensis	Grunow
254	26891	Cyclotella costei	DRUART & STRAUB
255	16099	Cyclotella delicatula	Hustedt
261	6936	Cyclotella ocellata	Pantocsek
294	7715	Didymocystis	Korshikov
303	7884	Dinobryon sociale	Ehrenberg
305	7143	Dinobryon sociale var. stipitatum	(F.Stein) Lemmermann
262	26895	Discostella pseudostelligera	(Hustedt) Houk & Klee
333		Eutetramorus/Sphaerocystis	, , , , , , , , , , , , , , , , , , , ,
1246	6409	Fragilaria tenera	(W.Smith) Lange-Bertalot
349	6410	Fragilaria ulna angustissima - Sip- pen	sensu Krammer & Lange- Bertalot
1590	8175	Geitlerinema splendidum	(Greville ex Gomont) Anagn.
390	7512	Gymnodinium	F.Stein
420	7209	Lagerheimia ciliata	(Lagerheim) Chodat
433	8433	Limnothrix	M.E.Meffert
459	8024	Microcystis	Kützing ex Lemmermann
452	8153	Microcystis aeruginosa	Kützing
462	8710	Microcystis wesenbergii	(Komárek) Komárek
		, , , , , , , , , , , , , , , , , , ,	(M.J.Berkeley) Komárková-
469	7090	Monoraphidium griffithii	Legnerová

246

289

8835

7033

Cyanodictyon

Dictyosphaerium pulchellum

Taxon-	DV/ Nr	TAYONNAME	A. 1
		TAXONNAME Monoraphidium komarkovae	Autor
471	7913 7251	Oocystis lacustris	Nygaard Chodat
514	7871	Oocystis nacustris Oocystis marssonii	
515	17300	Peridiniopsis polonicum	Lemmermann (Molecaryégica) Pourrolly
546		Peridiniopsis polonicum	(Wołoszyńska) Bourrelly
555 556	7077 7077	Peridinium groß (>40µm)	Ehrenberg Ehrenberg
557	7077	Peridinium klein (<25µm)	Ehrenberg
558	7463	Peridinium umbonatum-Komplex	F.Stein
336	7403	r endiment umbonatum-rompiex	(de Candolle ex Gomont) Anag-
586	8440	Planktothrix rubescens	nostidis & Komárek
606	7897	Pseudosphaerocystis lacustris	(Lemmermann) Nováková
614	7339	Quadrigula pfitzeri	(Schröder) G.M.Smith
890	8173	Radiocystis geminata	Skuja
628	7868	Rhodomonas lacustris	Pascher & Ruttner
676	7892	Scenedesmus	Meyen
692	8430	Snowella lacustris	(Chodat) Komárek & Hindák
751	7281	Tetraedron minimum	(A.Braun) Hansgirg
791	8023	Unbestimmte Chroococcales	Wettstein
794	17457	Unbestimmte Cryptophyceae	Fritsch in G.S.West & Fritsch
811	7290	Uroglena	Ehrenberg
817	17101	Willea vilhelmii	(Fott) Komárek
821	8189	Woronichinia naegeliana	(Unger) Elenkin
829	6789	Zentrale Diatomeen 10-15µm	G.Karsten
833	6789	Zentrale Diatomeen 15-20µm	G.Karsten
834	6789	Zentrale Diatomeen 20-25µm	G.Karsten
840	6789	Zentrale Diatomeen 5-10µm	G.Karsten
Blank	ensee	(tiefste Stelle) (MST-Nr: 12921	9)
17	8072	Anabaena circinalis	Rabenhorst ex Bornet & Flahault
21	8032	Anabaena flos-aquae	Brébisson ex Bornet & Flahault
24	8855	Anabaena lemmermannii	P.G.Richter in Lemmermann
49	7844	Ankyra judayi	(G.M.Smith) Fott
50	7130	Ankyra lanceolata	(Korshikov) Fott
64	8873	Aphanocapsa	Nägeli
68	8100	Aphanothece	Nägeli
72	6050	Asterionella formosa	Hassall
78	6785	Aulacoseira granulata	(Ehrenberg) Simonsen
104	7239	Ceratium hirundinella	(O.F.Müller) Dujardin
131	7631	Chromulina	Cienkowski
139	7983	Chroomonas nordstedtii	Hansgirg
143	7211	Chrysochromulina parva	Lackey
161	7356	Closterium acutum var. variabile	(Lemmermann) Willi Krieger
179	7813	Coelastrum astroideum	De Notaris
236	7032	Cryptomonas 30-35µm	Ehrenberg
237	7032	Cryptomonas 35-40µm	Ehrenberg
238	7032	Cryptomonas 40-45µm	Ehrenberg
220	7398	Cryptomonas curvata	Ehrenberg em. Penard
222	7032	Cryptomonas erosa/ovata/phaseolus	Ehrenberg
223	7926	Cryptomonas marssonii	Skuja
246	0025	Cyanodictyon	Doochor

Pascher

Wood

Taxon-			
ID	DV Nr	TAXONNAME	Autor
333		Eutetramorus/Sphaerocystis	7 1010
351	26389	Fragilaria acus	(Kützing) Lange-Bertalot
336	16570	Fragilaria capucina	Desmazières
352	16658	Fragilaria ulna var. ulna	(Nitzsch) Lange-Bertalot
1037	7046	Lepocinclis	Perty
443	7306	Mallomonas	Perty
452	8153	Microcystis aeruginosa	Kützing
468	7245	Monoraphidium contortum	(Thuret) Komárková-Legnerová
400	1245	Worldraphididin contortain	(Thuret) Romarkova-Legherova
494	16856	Nitzschia acicularis - Formenkreis	sensu DV 16856
515	7871	Oocystis marssonii	
		-	Lemmermann (Turnin) Managhini
534	7055	Pediastrum duploy	(Turpin) Meneghini
535	7056	Pediastrum duplex	Meyen
557	7077	Peridinium klein (<25µm)	Ehrenberg
569	7059	Phacus	Dujardin
628	7868	Rhodomonas lacustris	Pascher & Ruttner (Turpin) Brébisson sensu Cho-
669	7010	Scenedesmus quadricauda	dat
740	7803	Synura	Ehrenberg
748	7279	Tetraedron caudatum	(Corda) Hansgirg
751	7281	Tetraedron minimum	(A.Braun) Hansgirg
786	7022	Unbestimmte Chlorococcales	(Marchand) Pascher
812	7027	Volvox aureus	Ehrenberg
840	6789	Zentrale Diatomeen 5-10µm	G.Karsten
	l .	See, östlich Bissee (MST-Nr:	
5	7018	Actinastrum hantzschii	, , , , , , , , , , , , , , , , , , ,
	1010		Lagerheim
12	CACE	l Amphora	Ehranhara
13	6165	Anghaena	Ehrenberg
31	8020	Anabaena	Bory ex Bornet & Flahault
31 18	8020 8857	Anabaena Anabaena compacta	Bory ex Bornet & Flahault (Nygaard) B.Hickel
31 18 21	8020 8857 8032	Anabaena compacta Anabaena flos-aquae	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault
31 18 21 37	8020 8857 8032 8846	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller
31 18 21 37 49	8020 8857 8032 8846 7844	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott
31 18 21 37 49 50	8020 8857 8032 8846 7844 7130	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott
31 18 21 37 49 50 55	8020 8857 8032 8846 7844 7130 8096	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann
31 18 21 37 49 50 55 56	8020 8857 8032 8846 7844 7130 8096 8845	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko
31 18 21 37 49 50 55 56 72	8020 8857 8032 8846 7844 7130 8096 8845 6050	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall
31 18 21 37 49 50 55 56 72 83	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites
31 18 21 37 49 50 55 56 72 83 75	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen
31 18 21 37 49 50 55 56 72 83 75	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen
31 18 21 37 49 50 55 56 72 83 75 78	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen
31 18 21 37 49 50 55 56 72 83 75 78 117	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021 7983	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas Chroomonas nordstedtii	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen Ehrenberg Hansgirg
31 18 21 37 49 50 55 56 72 83 75 78 117 139	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021 7983 7211	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas Chroomonas nordstedtii Chrysochromulina parva	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen Ehrenberg Hansgirg Lackey
31 18 21 37 49 50 55 56 72 83 75 78 117 139 143	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021 7983 7211 7024	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas Chroomonas nordstedtii Chrysochromulina parva Closterium	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen Ehrenberg Hansgirg Lackey Nitzsch ex Ralfs
31 18 21 37 49 50 55 56 72 83 75 78 117 139 143 173	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021 7983 7211 7024 17153	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas Chroomonas nordstedtii Chrysochromulina parva Closterium Closterium acutum var. linea	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen Ehrenberg Hansgirg Lackey Nitzsch ex Ralfs (Perty) W. & G.S.West
31 18 21 37 49 50 55 56 72 83 75 78 117 139 143 173 160 161	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021 7983 7211 7024 17153 7356	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas Chroomonas nordstedtii Chrysochromulina parva Closterium Closterium acutum var. linea Closterium acutum var. variabile	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen Ehrenberg Hansgirg Lackey Nitzsch ex Ralfs (Perty) W. & G.S.West (Lemmermann) Willi Krieger
31 18 21 37 49 50 55 56 72 83 75 78 117 139 143 173 160 161 179	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021 7983 7211 7024 17153 7356 7813	Anabaena Anabaena compacta Anabaena flos-aquae Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas Chroomonas nordstedtii Chrysochromulina parva Closterium Closterium acutum var. linea Coelastrum astroideum	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen Ehrenberg Hansgirg Lackey Nitzsch ex Ralfs (Perty) W. & G.S.West (Lemmermann) Willi Krieger De Notaris
31 18 21 37 49 50 55 56 72 83 75 78 117 139 143 173 160 161	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021 7983 7211 7024 17153 7356	Anabaena Anabaena compacta Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas Chroomonas nordstedtii Chrysochromulina parva Closterium Closterium acutum var. linea Closterium acutum var. variabile	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen Ehrenberg Hansgirg Lackey Nitzsch ex Ralfs (Perty) W. & G.S.West (Lemmermann) Willi Krieger
31 18 21 37 49 50 55 56 72 83 75 78 117 139 143 173 160 161 179 236	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021 7983 7211 7024 17153 7356 7813 7032	Anabaena Anabaena compacta Anabaena flos-aquae Anabaena pelenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas Chroomonas nordstedtii Chrysochromulina parva Closterium Closterium acutum var. linea Closterium acutum var. variabile Coelastrum astroideum Cryptomonas 30-35µm	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen Ehrenberg Hansgirg Lackey Nitzsch ex Ralfs (Perty) W. & G.S.West (Lemmermann) Willi Krieger De Notaris Ehrenberg
31 18 21 37 49 50 55 56 72 83 75 78 117 139 143 173 160 161 179 236	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021 7983 7211 7024 17153 7356 7813 7032	Anabaena Anabaena compacta Anabaena flos-aquae Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas Chroomonas nordstedtii Chrysochromulina parva Closterium Closterium acutum var. linea Closterium acutum var. variabile Coelastrum astroideum Cryptomonas 30-35µm Cryptomonas erosa/ovata/phaseolus	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen Ehrenberg Hansgirg Lackey Nitzsch ex Ralfs (Perty) W. & G.S.West (Lemmermann) Willi Krieger De Notaris Ehrenberg
31 18 21 37 49 50 55 56 72 83 75 78 117 139 143 173 160 161 179 236	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021 7983 7211 7024 17153 7356 7813 7032 7032 7926	Anabaena Anabaena compacta Anabaena flos-aquae Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas Chroomonas nordstedtii Chrysochromulina parva Closterium Closterium acutum var. linea Closterium acutum var. variabile Coelastrum astroideum Cryptomonas 30-35µm Cryptomonas marssonii	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen Ehrenberg Hansgirg Lackey Nitzsch ex Ralfs (Perty) W. & G.S.West (Lemmermann) Willi Krieger De Notaris Ehrenberg Ehrenberg Skuja
31 18 21 37 49 50 55 56 72 83 75 78 117 139 143 173 160 161 179 236	8020 8857 8032 8846 7844 7130 8096 8845 6050 6797 6798 6785 7021 7983 7211 7024 17153 7356 7813 7032	Anabaena Anabaena compacta Anabaena flos-aquae Anabaena flos-aquae Anabaenopsis elenkinii Ankyra judayi Ankyra lanceolata Aphanizomenon gracile Aphanizomenon issatschenkoi Asterionella formosa Aulacoseira Aulacoseira ambigua Aulacoseira granulata Chlamydomonas Chroomonas nordstedtii Chrysochromulina parva Closterium Closterium acutum var. linea Closterium acutum var. variabile Coelastrum astroideum Cryptomonas 30-35µm Cryptomonas erosa/ovata/phaseolus	Bory ex Bornet & Flahault (Nygaard) B.Hickel Brébisson ex Bornet & Flahault V.Miller (G.M.Smith) Fott (Korshikov) Fott Lemmermann (Usacev) Proshkina-Lavrenko Hassall Thwaites (Grunow) Simonsen (Ehrenberg) Simonsen Ehrenberg Hansgirg Lackey Nitzsch ex Ralfs (Perty) W. & G.S.West (Lemmermann) Willi Krieger De Notaris Ehrenberg

Cyclostephanos dubius

247

6943

(Hustedt) Round

Taxon- ID	DV_Nr	TAXONNAME	Autor
248	6177	Cyclostephanos invisitatus	(M.H.Hohn & Hellerman) Theriot, Stoermer & Håkansson
250	6178	Cyclotella atomus	Hustedt
3002	36000	Cyclotella balatonis	PANTOCSEK
260	6002	Cyclotella meneghiniana	Kützing
269	36029	Cymatopleura solea	(Brébisson) W.Smith
283	6210	Diatoma tenuis	C.Agardh
299	7937	Dinobryon divergens	Imhof
303	7884	Dinobryon sociale	Ehrenberg
347	6161	Fragilaria	Lyngbye
351	26389	Fragilaria acus	(Kützing) Lange-Bertalot
336	16570	Fragilaria capucina	Desmazières
393	6041	Gyrosigma attenuatum	(Kützing) Rabenhorst
452	8153	Microcystis aeruginosa	Kützing
468	7245	Monoraphidium contortum	(Thuret) Komárková-Legnerová
486	6990	Navicula	Bory
506	6972	Nitzschia	Hassall
	30.2		- Hassan
494	16856	Nitzschia acicularis - Formenkreis	sensu DV 16856
515	7871	Oocystis marssonii	Lemmermann
534	7055	Pediastrum boryanum	(Turpin) Meneghini
535	7056	Pediastrum duplex	Meyen
541	7058	Pediastrum tetras	(Ehrenberg) Ralfs
557	7077	Peridinium klein (<25µm)	Ehrenberg
568	7997	Phacus pyrum	(Ehrenberg) F.Stein
580	8818	Planktolyngbya limnetica	(Lemmermann) Komárková- Legnerová & Cronberg
584	8438	Planktothrix agardhii	(Gomont) Anagnostidis & Komárek
596	8206	Pseudanabaena limnetica	(Lemmermann) Komárek
1693	7126	Quadricoccus ellipticus	Hortobágyi
628	7868	Rhodomonas lacustris	Pascher & Ruttner
676	7892	Scenedesmus	Meyen
639	7049	Scenedesmus acuminatus	(Lagerheim) Chodat
666	7266	Scenedesmus obtusus	Meyen
667	7086	Scenedesmus opoliensis	P.G.Richter
669	7010	Scenedesmus quadricauda	(Turpin) Brébisson sensu Chodat
717	6795	Stephanodiscus alpinus	Hustedt
721	6009	Stephanodiscus hantzschii	Grunow
723	6226	Stephanodiscus minutulus	(Kützing) Cleve & Moeller
734	6952	Surirella	Turpin
748	7279	Tetraedron caudatum	(Corda) Hansgirg
751	7281	Tetraedron minimum	(A.Braun) Hansgirg
803	6947	Unbestimmte pennate Diatomeen	G.Karsten
822	8190	Woronichinia	Elenkin
829	6789	Zentrale Diatomeen 10-15µm	G.Karsten
833	6789	Zentrale Diatomeen 15-20µm	G.Karsten
834	6789	Zentrale Diatomeen 20-25µm	G.Karsten
835	6789	Zentrale Diatomeen 25-30µm	G.Karsten
840	6789	Zentrale Diatomeen 5-10µm	G.Karsten

Taxon-			
ID		TAXONNAME	Autor
Bothk	amper	See, tiefste Stelle (MST-Nr: 12	9081)
5	7018	Actinastrum hantzschii	Lagerheim
31	8020	Anabaena	Bory ex Bornet & Flahault
18	8857	Anabaena compacta	(Nygaard) B.Hickel
21	8032	Anabaena flos-aquae	Brébisson ex Bornet & Flahault
37	8846	Anabaenopsis elenkinii	V.Miller
49	7844	Ankyra judayi	(G.M.Smith) Fott
50	7130	Ankyra lanceolata	(Korshikov) Fott
54	8031	Aphanizomenon flos-aquae	(Linnaeus) Ralfs ex Bornet & Flahault
55	8096	Aphanizomenon gracile	Lemmermann
56	8845	Aphanizomenon issatschenkoi	(Usacev) Proshkina-Lavrenko
72	6050	Asterionella formosa	Hassall
83	6797	Aulacoseira	Thwaites
75	6798	Aulacoseira ambigua	(Grunow) Simonsen
78	6785	Aulacoseira granulata	(Ehrenberg) Simonsen
79	6800	Aulacoseira granulata var. angustissima	(O.Müller) Simonsen
139	7983	Chroomonas nordstedtii	Hansgirg
143	7211	Chrysochromulina parva	Lackey
160	17153	Closterium acutum var. linea	(Perty) W. & G.S.West
161	7356	Closterium acutum var. variabile	(Lemmermann) Willi Krieger
179	7813	Coelastrum astroideum	De Notaris
217	7812	Crucigeniella rectangularis	(Nägeli) Komárek
236	7032	Cryptomonas 30-35µm	Ehrenberg
220	7398	Cryptomonas curvata	Ehrenberg em. Penard
222	7032	Cryptomonas erosa/ovata/phaseolus	Ehrenberg
223	7926	Cryptomonas marssonii	Skuja
1260	16791	Cyclostephanos delicatus	(Genkal) Casper & Scheffler
247	6943	Cyclostephanos dubius	(Hustedt) Round
248	6177	Cyclostephanos invisitatus	(M.H.Hohn & Hellerman) Theri- ot, Stoermer & Håkansson
255	16099	Cyclotella delicatula	Hustedt
260	6002	Cyclotella meneghiniana	Kützing
261	6936	Cyclotella ocellata	Pantocsek
269	36029	Cymatopleura solea	(Brébisson) W.Smith
283	6210	Diatoma tenuis	C.Agardh
299	7937	Dinobryon divergens	Imhof
262	26895	Discostella pseudostelligera	(Hustedt) Houk & Klee
347	6161	Fragilaria	Lyngbye
351	26389	Fragilaria acus	(Kützing) Lange-Bertalot
336	16570	Fragilaria capucina	Desmazières
459	8024	Microcystis	Kützing ex Lemmermann
452	8153	Microcystis aeruginosa	Kützing
468	7245	Monoraphidium contortum	(Thuret) Komárková-Legnerová
469	7090	Monoraphidium griffithii	(M.J.Berkeley) Komárková- Legnerová
506	6972	Nitzschia	Hassall
494	16856	Nitzschia acicularis - Formenkreis	sensu DV 16856
517	7250	Oocystis	A.Braun

Taxon-			
ID	DV_Nr	TAXONNAME	Autor
515	7871	Oocystis marssonii	Lemmermann
534	7055	Pediastrum boryanum	(Turpin) Meneghini
535	7056	Pediastrum duplex	Meyen
541	7058	Pediastrum tetras	(Ehrenberg) Ralfs
557	7077	Peridinium klein (<25µm)	Ehrenberg
568	7997	Phacus pyrum	(Ehrenberg) F.Stein
580	8818	Planktolyngbya limnetica	(Lemmermann) Komárková- Legnerová & Cronberg (Gomont) Anagnostidis &
584	8438	Planktothrix agardhii	Komárek
596	8206	Pseudanabaena limnetica	(Lemmermann) Komárek
628	7868	Rhodomonas lacustris	Pascher & Ruttner
676	7892	Scenedesmus	Meyen
639	7049	Scenedesmus acuminatus	(Lagerheim) Chodat
662	7062	Scenedesmus linearis	Komárek
666	7266	Scenedesmus obtusus	Meyen
667	7086	Scenedesmus opoliensis	P.G.Richter
669	7010	Scenedesmus quadricauda	(Turpin) Brébisson sensu Cho- dat
717	6795	Stephanodiscus alpinus	Hustedt
721	6009	Stephanodiscus hantzschii	Grunow
723	6226	Stephanodiscus minutulus	(Kützing) Cleve & Moeller
725	6796	Stephanodiscus neoastraea	Håkansson & B.Hickel
751	7281	Tetraedron minimum	(A.Braun) Hansgirg
822	8190	Woronichinia	Elenkin
829	6789	Zentrale Diatomeen 10-15µm	G.Karsten
833	6789	Zentrale Diatomeen 15-20µm	G.Karsten
834	6789	Zentrale Diatomeen 20-25µm	G.Karsten
835	6789	Zentrale Diatomeen 25-30µm	G.Karsten
840	6789	Zentrale Diatomeen 5-10µm	G.Karsten
Dültos	~ (MC	T_Nr: 129001)	

Bültsee (MST-Nr: 129004)

31	8020	Anabaena	Bory ex Bornet & Flahault
21	8032	Anabaena flos-aquae	Brébisson ex Bornet & Flahault
24	8855	Anabaena lemmermannii	P.G.Richter in Lemmermann
50	7130	Ankyra lanceolata	(Korshikov) Fott
64	8873	Aphanocapsa	Nägeli
68	8100	Aphanothece	Nägeli
90	7584	Bitrichia chodatii	(Reverdin) Chodat
104	7239	Ceratium hirundinella	(O.F.Müller) Dujardin
117	7021	Chlamydomonas	Ehrenberg
143	7211	Chrysochromulina parva	Lackey
161	7356	Closterium acutum var. variabile	(Lemmermann) Willi Krieger
187	8115	Coelosphaerium kuetzingianum	Nägeli
206	7028	Cosmarium	Corda ex Ralfs
200	17162	Cosmarium depressum var. planc- tonicum	Reverdin
205	7368	Cosmarium reniforme	(Ralfs) W.Archer
236	7032	Cryptomonas 30-35µm	Ehrenberg
237	7032	Cryptomonas 35-40µm	Ehrenberg
220	7398	Cryptomonas curvata	Ehrenberg em. Penard
222	7032	Cryptomonas erosa/ovata/phaseolus	Ehrenberg

Taxon-			
ID	DV_Nr	TAXONNAME	Autor
223	7926	Cryptomonas marssonii	Skuja
296	7925	Dinobryon bavaricum	Imhof
297	7400	Dinobryon crenulatum	W. & G.S.West
299	7937	Dinobryon divergens	Imhof
303	7884	Dinobryon sociale	Ehrenberg
347	6161	Fragilaria	Lyngbye
342	6075	Fragilaria crotonensis	Kitton
1246	6409	Fragilaria tenera	(W.Smith) Lange-Bertalot
1590	8175	Geitlerinema splendidum	(Greville ex Gomont) Anagn.
375	8989	Gomphosphaeria	Kützing
390	7512	Gymnodinium	F.Stein
385	17085	Gymnodinium uberrimum	(G.J.Allman) Kofoid & Swezy
439	7149	Mallomonas caudata	Iwanoff em. Willi Krieger
459	8024	Microcystis	Kützing ex Lemmermann
452	8153	Microcystis aeruginosa	Kützing
473	7916	Monoraphidium	Komárková-Legnerová
467	7317	Monoraphidium circinale	(Nygaard) Nygaard
471	7913	Monoraphidium komarkovae	Nygaard
486	6990	Navicula	Bory
494	16856	Nitzschia acicularis - Formenkreis	sensu DV 16856
517	7250	Oocystis	A.Braun
515	7871	Oocystis marssonii	Lemmermann
524	8011	Oscillatoria	Vaucher ex Gomont
556	7077	Peridinium groß (>40µm)	Ehrenberg
557	7077	Peridinium klein (<25µm)	Ehrenberg
558	7463	Peridinium umbonatum-Komplex	F.Stein
568	7997	Phacus pyrum	(Ehrenberg) F.Stein
582	7898	Planktosphaeria gelatinosa	G.M.Smith (Gomont) Anagnostidis &
584	8438	Planktothrix agardhii	Komárek
601	17313	Pseudopedinella erkensis	Skuja
1248	17317	Pseudosphaerocystis	Woronichin
614	7339	Quadrigula pfitzeri	(Schröder) G.M.Smith
890	8173	Radiocystis geminata	Skuja
628	7868	Rhodomonas lacustris	Pascher & Ruttner
627	7894	Rhodomonas lens	Pascher & Ruttner
676	7892	Scenedesmus	Meyen
1702	7421	Scenedesmus acunae	Comas
692	8430	Snowella lacustris	(Chodat) Komárek & Hindák
693	8810	Snowella litoralis	(Häyrén) Komárek& Hindák
751	7281	Tetraedron minimum	(A.Braun) Hansgirg
786	7022	Unbestimmte Chlorococcales	(Marchand) Pascher
794	17457	Unbestimmte Cryptophyceae	Fritsch in G.S.West & Fritsch
811	7290	Uroglena	Ehrenberg
817	17101	Willea vilhelmii	(Fott) Komárek
821	8189	Woronichinia naegeliana	(Unger) Elenkin
834	6789	Zentrale Diatomeen 20-25µm	G.Karsten
		r See vor Schlesen, tiefste Ste	

Dobersdorfer See vor Schlesen, tiefste Stelle(MST-Nr: 129009)

21	8032	Anabaena flos-aquae	Brébisson ex Bornet & Flahault
25	8854	Anabaena macrospora	Klebahn
49	7844	Ankyra judayi	(G.M.Smith) Fott

223

7926

Cryptomonas marssonii

Skuja

Taxon-			
ID		TAXONNAME	Autor
557	7077	Peridinium klein (<25µm)	Ehrenberg
500	0040	Blanktolynahya limnatiaa	(Lemmermann) Komárková-
580	8818	Planktolyngbya limnetica	Legnerová & Cronberg (Gomont) Anagnostidis &
584	8438	Planktothrix agardhii	Komárek
596	8206	Pseudanabaena limnetica	(Lemmermann) Komárek
596	8206	Pseudanabaena limnetica	(Lemmermann) Komárek
606	7897	Pseudosphaerocystis lacustris	(Lemmermann) Nováková
890	8173	Radiocystis geminata	Skuja
628	7868	Rhodomonas lacustris	Pascher & Ruttner
627	7894	Rhodomonas lens	Pascher & Ruttner
676	7892	Scenedesmus	Meyen
662	7062	Scenedesmus linearis	Komárek
692	8430	Snowella lacustris	(Chodat) Komárek & Hindák
693	8810	Snowella litoralis	(Häyrén) Komárek& Hindák
712	7064	Staurastrum	Meyen ex Ralfs
721	6009	Stephanodiscus hantzschii	Grunow
723	6226	Stephanodiscus minutulus	(Kützing) Cleve & Moeller
725	6796	Stephanodiscus neoastraea	Håkansson & B.Hickel
746	7260	Tetrachlorella alternans	(G.M.Smith) Korshikov
751	7281	Tetraedron minimum	(A.Braun) Hansgirg
778	7092	Tribonema	Derbes & Solier
794	17457	Unbestimmte Cryptophyceae	Fritsch in G.S.West & Fritsch
811	7290	Uroglena	Ehrenberg
			(Lemmermann) Komárek &
820	8808	Woronichinia compacta	Hindák
821	8189	Woronichinia naegeliana	(Unger) Elenkin
829	6789	Zentrale Diatomeen 10-15µm	G.Karsten
833	6789	Zentrale Diatomeen 15-20µm	G.Karsten
834	6789	Zentrale Diatomeen 20-25µm	G.Karsten
835	6789	Zentrale Diatomeen 25-30µm	G.Karsten
Garre	nseee	(MST-Nr: 129002)	
31	8020	Anabaena	Bory ex Bornet & Flahault
21	8032	Anabaena flos-aquae	Brébisson ex Bornet & Flahault
24	8855	Anabaena lemmermannii	P.G.Richter in Lemmermann
49	7844	Ankyra judayi	(G.M.Smith) Fott
50	7130	Ankyra lanceolata	(Korshikov) Fott
68	8100	Aphanothece	Nägeli
72	6050	Asterionella formosa	Hassall
83	6797	Aulacoseira	Thwaites
78	6785	Aulacoseira granulata	(Ehrenberg) Simonsen
90	7584	Bitrichia chodatii	(Reverdin) Chodat
103	17099	Ceratium furcoides	(Levander) Langhans
104	7239	Ceratium hirundinella	(O.F.Müller) Dujardin
143	7211	Chrysochromulina parva	Lackey
161	7356	Closterium acutum var. variabile	(Lemmermann) Willi Krieger
184	7214	Coelastrum reticulatum	(Dangeard) Senn
187	8115	Coelosphaerium kuetzingianum	Nägeli
236	7032	Cryptomonas 30-35µm	Ehrenberg
222	7032	Cryptomonas erosa/ovata/phaseolus	Ehrenberg
222	7000	Cryptomonae mareconii	Clauia

6785

6800

7021

sima

78

79

117

Aulacoseira granulata

Chlamydomonas

Aulacoseira granulata var. angustis-

(Ehrenberg) Simonsen

(O.Müller) Simonsen

Ehrenberg

Taxon-				
ID	DV_Nr	TAXONNAME	Autor	
247	6943	Cyclostephanos dubius	(Hustedt) Round	
254	26891	Cyclotella costei	DRUART & STRAUB	
261	6936	Cyclotella ocellata	Pantocsek	
333		Eutetramorus/Sphaerocystis		
347	6161	Fragilaria	Lyngbye	
1246	6409	Fragilaria tenera	(W.Smith) Lange-Bertalot	
390	7512	Gymnodinium	F.Stein	
385	17085	Gymnodinium uberrimum	(G.J.Allman) Kofoid & Swezy	
439	7149	Mallomonas caudata	Iwanoff em. Willi Krieger	
468	7245	Monoraphidium contortum	(Thuret) Komárková-Legnerová	
471	7913	Monoraphidium komarkovae	Nygaard	
517	7250	Oocystis	A.Braun	
555	7077	Peridinium	Ehrenberg	
557	7077	Peridinium klein (<25µm)	Ehrenberg	
560	7258	Peridinium willei	Huitfeldt-Kaas	
569	7059	Phacus	Dujardin	
582	7898	Planktosphaeria gelatinosa	G.M.Smith	
584	8438	Planktothrix agardhii	(Gomont) Anagnostidis & Komárek	
890	8173	Radiocystis geminata	Skuja	
628	7868	Rhodomonas lacustris	Pascher & Ruttner	
			(Turpin) Brébisson sensu Cho-	
669	7010	Scenedesmus quadricauda	dat	
723	6226	Stephanodiscus minutulus	(Kützing) Cleve & Moeller	
751	7281	Tetraedron minimum	(A.Braun) Hansgirg	
786	7022	Unbestimmte Chlorococcales	(Marchand) Pascher	
794	17457	Unbestimmte Cryptophyceae	Fritsch in G.S.West & Fritsch	
817	17101	Willea vilhelmii	(Fott) Komárek	
821	8189	Woronichinia naegeliana	(Unger) Elenkin	
840	6789	Zentrale Diatomeen 5-10µm	G.Karsten	
Große		ensee, tiefste Stelle (MST-Nr:	, , , , , , , , , , , , , , , , , , ,	
5	7018	Actinastrum hantzschii	Lagerheim	
31	8020	Anabaena	Bory ex Bornet & Flahault	
17	8072	Anabaena circinalis	Rabenhorst ex Bornet & Flahault	
18	8857	Anabaena compacta	(Nygaard) B.Hickel	
21	8032	Anabaena flos-aquae	Brébisson ex Bornet & Flahault	
37	8846	Anabaenopsis elenkinii	V.Miller	
41	7845	Ankistrodesmus fusiformis	Corda	
49	7844	Ankyra judayi	(G.M.Smith) Fott	
58	8033	Aphanizomenon	Morren ex Bornet & Flahault	
54	8031	Aphanizomenon flos-aquae	(Linnaeus) Ralfs ex Bornet & Flahault	
55	8096	Aphanizomenon gracile	Lemmermann	
56	8845	Aphanizomenon issatschenkoi	(Usacev) Proshkina-Lavrenko	
64	8873	Aphanocapsa	Nägeli	
72	6050	Asterionella formosa	Hassall	
83	6797	Aulacoseira	Thwaites	
75	6798	Aulacoseira ambigua	(Grunow) Simonsen	
	0=0=	Aulagosira granulata	(EL L) 0:	

Juli 2014

Taxon-			
ID	DV Nr	TAXONNAME	Autor
126	7927	Chlorogonium	Ehrenberg
139	7983	Chroomonas nordstedtii	Hansgirg
143	7211	Chrysochromulina parva	Lackey
160	17153	Closterium acutum var. linea	(Perty) W. & G.S.West
161	7356	Closterium acutum var. variabile	(Lemmermann) Willi Krieger
179	7813	Coelastrum astroideum	De Notaris
206	7028	Cosmarium	Corda ex Ralfs
236	7032	Cryptomonas 30-35µm	Ehrenberg
237	7032	Cryptomonas 35-40µm	Ehrenberg
220	7398	Cryptomonas curvata	Ehrenberg em. Penard
222	7032	Cryptomonas erosa/ovata/phaseolus	Ehrenberg
223	7926	Cryptomonas marssonii	Skuja
1260	16791	Cyclostephanos delicatus	(Genkal) Casper & Scheffler
247	6943	Cyclostephanos dubius	(Hustedt) Round
	- 55.5		(M.H.Hohn & Hellerman) Theri-
248	6177	Cyclostephanos invisitatus	ot, Stoermer & Håkansson
250	6178	Cyclotella atomus	Hustedt
3002	36000	Cyclotella balatonis	PANTOCSEK
255	16099	Cyclotella delicatula	Hustedt
260	6002	Cyclotella meneghiniana	Kützing
261	6936	Cyclotella ocellata	Pantocsek
283	6210	Diatoma tenuis	C.Agardh
289	7033	Dictyosphaerium pulchellum	Wood
294	7715	Didymocystis	Korshikov
297	7400	Dinobryon crenulatum	W. & G.S.West
299	7937	Dinobryon divergens	Imhof
303	7884	Dinobryon sociale	Ehrenberg
163	17177	Diplochloris	Korshikov
262	26895	Discostella pseudostelligera	(Hustedt) Houk & Klee
		Erkenia subaequiciliata /	
318		Chrysochromulina parva	
326	7016	Euglena	Ehrenberg
322	7037	Euglena acus	Ehrenberg
998	7041	Euglena oxyuris	Schmarda
347	6161	Fragilaria	Lyngbye
342	6075	Fragilaria crotonensis	Kitton
0.40	2442	Fragilaria ulna angustissima - Sip-	sensu Krammer & Lange-
349	6410	pen	Bertalot
411	7914	Kirchneriella	Schmidle
422	7210	Lagerheimia genevensis	Chodat (Coor) M F Moffort
432	8434	Limnothrix redekei	(Goor) M.E.Meffert
443	7306	Mallomonas Molosira varians	Perty
446	6005	Melosira varians	C.Agardh
459	8024	Microcystis acruginosa	Kützing ex Lemmermann
452	8153	Microcystis aeruginosa Microcystis wesenbergii	Kützing (Komárok) Komárok
462	8710 7317	Monoraphidium circinale	(Komárek) Komárek
467	7317	Monoraphidium contortum	(Nygaard) Nygaard (Thurst) Komárková Lognorová
468	7245	•	(Thuret) Komárková-Legnerová
471	7913	Monoraphidium komarkovae	Nygaard
506	6972	Nitzschia	Hassall
494	16856	Nitzschia acicularis - Formenkreis	sensu DV 16856

Taxon-	DV Nr	TAYONNAME	Autor
517	7250	Oocystis	Autor A.Braun
515	7871	Oocystis marssonii	Lemmermann
534	7055	Pediastrum boryanum	(Turpin) Meneghini
535	7056	Pediastrum duplex	Meyen
557	7077	Peridinium klein (<25µm)	Ehrenberg
569	7059	Phacus	Dujardin
568	7997	Phacus pyrum	(Ehrenberg) F.Stein
580	8818	Planktolyngbya limnetica	(Lemmermann) Komárková- Legnerová & Cronberg
580	8818	Planktolyngbya limnetica	(Lemmermann) Komárková- Legnerová & Cronberg
582	7898	Planktosphaeria gelatinosa	G.M.Smith
584	8438	Planktothrix agardhii	(Gomont) Anagnostidis & Komárek
598	8059	Pseudanabaena	Lauterborn
594	8008	Pseudanabaena catenata	Lauterborn
596	8206	Pseudanabaena limnetica	(Lemmermann) Komárek
628	7868	Rhodomonas lacustris	Pascher & Ruttner
676	7892	Scenedesmus	Meyen
639	7049	Scenedesmus acuminatus	(Lagerheim) Chodat
652	7878	Scenedesmus dimorphus	(Turpin) Kützing
662	7062	Scenedesmus linearis	Komárek
666	7266	Scenedesmus obtusus	Meyen
1101	7748	Scenedesmus ovalternus	Chodat
669	7010	Scenedesmus quadricauda	(Turpin) Brébisson sensu Cho- dat
1042	17331	Spermatozopsis exsultans	Korshikov
717	6795	Stephanodiscus alpinus	Hustedt
721	6009	Stephanodiscus hantzschii	Grunow
723	6226	Stephanodiscus minutulus	(Kützing) Cleve & Moeller
725	6796	Stephanodiscus neoastraea	Håkansson & B.Hickel
748	7279	Tetraedron caudatum	(Corda) Hansgirg
751	7281	Tetraedron minimum	(A.Braun) Hansgirg
791	8023	Unbestimmte Chroococcales	Wettstein
811	7290	Uroglena	Ehrenberg
695	17417	Vitreochlamys	A.Batko
822	8190	Woronichinia	Elenkin
829	6789	Zentrale Diatomeen 10-15µm	G.Karsten
840	6789	Zentrale Diatomeen 5-10µm	G.Karsten

Großer Plöner See, Südteil, tiefste St. (MST-Nr: 129102)

31	8020	Anabaena	Bory ex Bornet & Flahault
19	8856	Anabaena crassa	(Lemmermann) Komárková- Legnerová & Cronberg
21	8032	Anabaena flos-aquae	Brébisson ex Bornet & Flahault
24	8855	Anabaena lemmermannii	P.G.Richter in Lemmermann
859	8853	Anabaena mendotae	Trelease
1268	8214	Anabaena viguieri	Denis & Fremy
54	8031	Aphanizomenon flos-aquae	(Linnaeus) Ralfs ex Bornet & Flahault
55	8096	Aphanizomenon gracile	Lemmermann
56	8845	Aphanizomenon issatschenkoi	(Usacev) Proshkina-Lavrenko
72	6050	Asterionella formosa	Hassall
83	6797	Aulacoseira	Thwaites

584

8438

Planktothrix agardhii

Komárek

- 181 -

Taxon-	DV Nr	TAXONNAME	Autor	
1300	8226	Pseudanabaena acicularis	(Nygaard) Anagnostidis & Komárek	
596	8206	Pseudanabaena limnetica	(Lemmermann) Komárek	
628	7868	Rhodomonas lacustris	Pascher & Ruttner	
627	7894	Rhodomonas lens	Pascher & Ruttner	
669	7010	Scenedesmus quadricauda	(Turpin) Brébisson sensu Cho- dat	
692	8430	Snowella lacustris	(Chodat) Komárek & Hindák	
717	6795	Stephanodiscus alpinus	Hustedt	
721	6009	Stephanodiscus hantzschii	Grunow	
723	6226	Stephanodiscus minutulus	(Kützing) Cleve & Moeller	
725	6796	Stephanodiscus neoastraea	Håkansson & B.Hickel	
740	7803	Synura	Ehrenberg	
780	7015	Ulothrix	Kützing	
811	7290	Uroglena	Ehrenberg	
853	17098	Woloszynskia	R.H.Thompson	
829	6789	Zentrale Diatomeen 10-15µm	G.Karsten	
833	6789	Zentrale Diatomeen 15-20µm	G.Karsten	
834	6789	Zentrale Diatomeen 20-25µm	G.Karsten	
835	6789	Zentrale Diatomeen 25-30µm	G.Karsten	
840	6789	Zentrale Diatomeen 5-10µm	G.Karsten	

Großer Segeberger See, tiefste Stelle (MST-Nr: 129008)

5	7040	Actinastrum hantzschii	Lagarhaim	
	7018		Lagerheim	
21	8032	Anabaena flos-aquae	Brébisson ex Bornet & Flahault	
24	8855	Anabaena lemmermannii	P.G.Richter in Lemmermann	
25	8854	Anabaena macrospora	Klebahn	
1268	8214	Anabaena viguieri	Denis & Fremy	
49	7844	Ankyra judayi	(G.M.Smith) Fott	
50	7130	Ankyra lanceolata	(Korshikov) Fott	
58	8033	Aphanizomenon	Morren ex Bornet & Flahault	
54	8031	Aphanizomenon flos-aquae	(Linnaeus) Ralfs ex Bornet & Flahault	
55	8096	Aphanizomenon gracile	Lemmermann	
72	6050	Asterionella formosa	Hassall	
83	6797	Aulacoseira	Thwaites	
75	6798	Aulacoseira ambigua	(Grunow) Simonsen	
		Aulacoseira granulata var. angustis-		
79	6800	sima	(O.Müller) Simonsen	
100	7949	Carteria	Diesing em. Francé	
103	17099	Ceratium furcoides	(Levander) Langhans	
104	7239	Ceratium hirundinella	(O.F.Müller) Dujardin	
117	7021	Chlamydomonas	Ehrenberg	
143	7211	Chrysochromulina parva	Lackey	
158	7973	Closterium aciculare	T.West	
160	17153	Closterium acutum var. linea	(Perty) W. & G.S.West	
161	7356	Closterium acutum var. variabile	(Lemmermann) Willi Krieger	
179	7813	Coelastrum astroideum	De Notaris	
236	7032	Cryptomonas 30-35µm	Ehrenberg	
237	7032	Cryptomonas 35-40µm	Ehrenberg	
220	7398	Cryptomonas curvata	Ehrenberg em. Penard	
222	7032	Cryptomonas erosa/ovata/phaseolus		

Taxon-				
ID		TAXONNAME	Autor	
223	7926	Cryptomonas marssonii	Skuja	
261	6936	Cyclotella ocellata	Pantocsek	
283	6210	Diatoma tenuis	C.Agardh	
297	7400	Dinobryon crenulatum	W. & G.S.West	
299	7937	Dinobryon divergens	Imhof	
303	7884	Dinobryon sociale	Ehrenberg	
308	17178	Diplochloris lunata	(Fott) Fott	
342	6075	Fragilaria crotonensis	Kitton	
352	16658	Fragilaria ulna var. ulna	(Nitzsch) Lange-Bertalot	
390	7512	Gymnodinium	F.Stein	
443	7306	Mallomonas	Perty	
462	8710	Microcystis wesenbergii	(Komárek) Komárek	
468	7245	Monoraphidium contortum	(Thuret) Komárková-Legnerová	
471	7913	Monoraphidium komarkovae	Nygaard	
506	6972	Nitzschia	Hassall	
494	16856	Nitzschia acicularis - Formenkreis	sensu DV 16856	
515	7871	Oocystis marssonii	Lemmermann	
527	7074	Pandorina morum	(O.F.Müller) Bory	
535	7054	Pediastrum duplex	Meyen	
546	17300	Peridiniopsis polonicum	(Wołoszyńska) Bourrelly	
555	7077	Peridinium	Ehrenberg	
557	7077	Peridinium klein (<25µm)	Ehrenberg	
558	7463	Peridinium umbonatum-Komplex	F.Stein	
		·	(Gomont) Anagnostidis &	
584	8438	Planktothrix agardhii	Komárek	
596	8206	Pseudanabaena limnetica	(Lemmermann) Komárek	
601	17313	Pseudopedinella erkensis	Skuja	
628	7868	Rhodomonas lacustris	Pascher & Ruttner	
627	7894	Rhodomonas lens	Pascher & Ruttner	
676	7892	Scenedesmus	Meyen (Turpin) Brébisson sensu Cho-	
669	7010	Scenedesmus quadricauda	dat	
717	6795	Stephanodiscus alpinus	Hustedt	
725	6796	Stephanodiscus neoastraea	Håkansson & B.Hickel	
751	7281	Tetraedron minimum	(A.Braun) Hansgirg	
853	17098	Woloszynskia	R.H.Thompson	
833	6789	Zentrale Diatomeen 15-20µm	G.Karsten	
834	6789	Zentrale Diatomeen 20-25µm	G.Karsten	
835	6789	Zentrale Diatomeen 25-30µm	G.Karsten	
838	6789	Zentrale Diatomeen 40-45µm G.Karsten		
840	6789 Zentrale Diatomeen 5-10µm G.Karsten		G.Karsten	
Ihlsee	, tiefst	e Stelle (MST-Nr: 129052)		
31	8020	Anabaena	Bory ex Bornet & Flahault	
1503	8807	Anabaena bergii	Ostenfeld	
18	8857	Anabaena compacta	(Nygaard) B.Hickel	
21	8032	Anabaena flos-aquae	Brébisson ex Bornet & Flahault	
24	8855	Anabaena lemmermannii	P.G.Richter in Lemmermann	
40	7044	Ankvra judavi	(C M Smith) Eatt	

(G.M.Smith) Fott

(Usacev) Proshkina-Lavrenko

Lemmermann

Nägeli

Ankyra judayi

Aphanocapsa

Aphanizomenon gracile

Aphanizomenon issatschenkoi

49

55

56

64

7844

8096

8845

8873

Taylan				
Taxon-	D\/ Nr	TAXONNAME	Autor	
68	8100	Aphanothece	Nägeli	
72	6050	Asterionella formosa	Hassall	
83	6797	Aulacoseira	Thwaites	
75	6798	Aulacoseira ambigua	(Grunow) Simonsen	
78	6785	Aulacoseira granulata	(Ehrenberg) Simonsen	
90	7584	Bitrichia chodatii	(Reverdin) Chodat	
104	7239	Ceratium hirundinella	(O.F.Müller) Dujardin	
133	8112	Chroococcus dispersus	(Keissler) Lemmermann	
143	7211	Chrysochromulina parva	Lackey	
160	17153	Closterium acutum var. linea	(Perty) W. & G.S.West	
161	7356	Closterium acutum var. variabile	(Lemmermann) Willi Krieger	
179	7813	Coelastrum astroideum	De Notaris	
187	8115	Coelosphaerium kuetzingianum	Nägeli	
206	7028	Cosmarium	Corda ex Ralfs	
236	7032	Cryptomonas 30-35µm	Ehrenberg	
237	7032	Cryptomonas 35-40µm	Ehrenberg	
220	7398	Cryptomonas curvata	Ehrenberg em. Penard	
222	7032	Cryptomonas erosa/ovata/phaseolus		
223	7926	Cryptomonas marssonii	Skuja	
247	6943	Cyclostephanos dubius	(Hustedt) Round	
260	6002	Cyclotella meneghiniana	Kützing	
268	36028	Cymatopleura elliptica	(Brébisson) W.Smith	
283	6210	Diatoma tenuis	C.Agardh	
297	7400	Dinobryon crenulatum	W. & G.S.West	
299	7937	Dinobryon divergens	Imhof	
303	7884	Dinobryon sociale	Ehrenberg	
333		Eutetramorus/Sphaerocystis		
347	6161	Fragilaria	Lyngbye	
390	7512	Gymnodinium	F.Stein	
385	17085	Gymnodinium uberrimum	(G.J.Allman) Kofoid & Swezy	
452	8153	Microcystis aeruginosa	Kützing	
477	7089	Mougeotia	C.Agardh	
494	16856	Nitzschia acicularis - Formenkreis	sensu DV 16856	
517	7250	Oocystis	A.Braun	
515	7871	Oocystis marssonii	Lemmermann	
524	8011	Oscillatoria	Vaucher ex Gomont	
555	7077	Peridinium	Ehrenberg	
557	7077	Peridinium klein (<25µm)	Ehrenberg	
568	7997	Phacus pyrum	(Ehrenberg) F.Stein	
584	8438	 Planktothrix agardhii	(Gomont) Anagnostidis & Komárek	
598	8059	Pseudanabaena	Lauterborn	
614	7339	Quadrigula pfitzeri	(Schröder) G.M.Smith	
890	8173	Radiocystis geminata	Skuja	
628	7868	Rhodomonas lacustris	Pascher & Ruttner	
676	7892	Scenedesmus	Meyen	
639	7049	Scenedesmus acuminatus	(Lagerheim) Chodat	
662	7062	Scenedesmus linearis	Komárek	
200	=0::	Connedomus quedricende	(Turpin) Brébisson sensu Cho-	
669	7010	Scenedesmus quadricauda	dat	
693	8810	Snowella litoralis	(Häyrén) Komárek& Hindák	
717	7 6795 Stephanodiscus alpinus Hustedt			

- 184 -

Euglena

7016

326

-				
Taxon-ID	DV_Nr	TAXONNAME	Autor	
721	6009	Stephanodiscus hantzschii	Grunow	
740	7803	Synura	Ehrenberg	
751	7281	Tetraedron minimum	(A.Braun) Hansgirg	
786	7022	Unbestimmte Chlorococcales (Marchand) Pascher		
803	6947	Unbestimmte pennate Diatomeen	G.Karsten	
811	7290	Uroglena	Ehrenberg	
817	17101	Willea vilhelmii	(Fott) Komárek	
822	8190	Woronichinia	Elenkin	
821	8189	Woronichinia naegeliana	(Unger) Elenkin	
1908	17590	Xanthidium	Ehrenberg ex Ralfs	
834	6789	Zentrale Diatomeen 20-25µm	G.Karsten	
Never	sdorfe	r See, tiefste Stelle (MST-Nr: 1	29160)	
7	16151	Actinocyclus normanii	(Gregory) Hustedt	
21	8032	Anabaena flos-aquae	Brébisson ex Bornet & Flahault	
24	8855	Anabaena lemmermannii	P.G.Richter in Lemmermann	
			(Linnaeus) Ralfs ex Bornet &	
54	8031	Aphanizomenon flos-aquae	Flahault	
55	8096	Aphanizomenon gracile	Lemmermann	
64	8873	Aphanocapsa	Nägeli	
			(Lemmermann) Cronberg &	
61	8844	Aphanocapsa holsatica	Komárek	
72	6050	Asterionella formosa	Hassall	
83	6797	Aulacoseira	Thwaites	
75	6798	Aulacoseira ambigua	(Grunow) Simonsen	
78	6785	Aulacoseira granulata	(Ehrenberg) Simonsen	
		Aulacoseira granulata var. angustis-	(0.14:11) 0:	
79	6800	sima Ceratium furcoides	(O.Müller) Simonsen	
103	17099	Ceratium hirundinella	(Levander) Langhans	
104	7239		(O.F.Müller) Dujardin	
117	7021	Chlamydomonas Chlamydomonas 5-10µm	Ehrenberg	
116	7021	Chrysochromulina parva	Ehrenberg	
143	7211	· · · · · · · · · · · · · · · · · · ·	Lackey	
160	17153	Closterium acutum var. linea	(Perty) W. & G.S.West	
161	7356	Closterium acutum var. variabile Coelastrum astroideum	(Lemmermann) Willi Krieger	
179	7813 7032	Cryptomonas 30-35µm	De Notaris Ehrenberg	
236	7398	Cryptomonas curvata	Ehrenberg em. Penard	
220	7390	Cryptomonas curvata	Lillenberg em. Fenard	
222	7032	Cryptomonas erosa/ovata/phaseolus	Ehrenberg	
223	7926	Cryptomonas marssonii	Skuja	
1260	16791	Cyclostephanos delicatus	(Genkal) Casper & Scheffler	
247	6943	Cyclostephanos dubius	(Hustedt) Round	
			(M.H.Hohn & Hellerman) Theri-	
248			ot, Stoermer & Håkansson	
3002	36000	Cyclotella balatonis	PANTOCSEK	
254	26891	Cyclotella costei	DRUART & STRAUB	
261	6936	Cyclotella ocellata	Pantocsek	
289	7033	Dictyosphaerium pulchellum	Wood	
262	26895	Discostella pseudostelligera	(Hustedt) Houk & Klee	
313	7923	Elakatothrix	Wille	
		Euglope	FI I	

Ehrenberg

Taxon-					
ID	DV_Nr	TAXONNAME	Autor		
333		Eutetramorus/Sphaerocystis			
347	6161	Fragilaria	Lyngbye		
342	6075	Fragilaria crotonensis	Kitton		
338	16995	Fragilaria gracilis	Østrup		
		Fragilaria ulna angustissima - Sip-	sensu Krammer & Lange-		
349	6410	pen	Bertalot		
432	8434	Limnothrix redekei	(Goor) M.E.Meffert		
443	7306	Mallomonas	Perty		
1020	8074	Merismopedia punctata	Meyen		
452	8153	Microcystis aeruginosa	Kützing		
462	8710	Microcystis wesenbergii	(Komárek) Komárek		
473	7916	Monoraphidium	Komárková-Legnerová		
464	7071	Monoraphidium arcuatum	(Korshikov) Hindák		
468	7245	Monoraphidium contortum	(Thuret) Komárková-Legnerová		
469	7090	Monoraphidium griffithii	(M.J.Berkeley) Komárková- Legnerová		
471	7913	Monoraphidium komarkovae	Nygaard		
517	7250	Oocystis	A.Braun		
515	7871	Oocystis marssonii	Lemmermann		
546	17300	Peridiniopsis polonicum	(Wołoszyńska) Bourrelly		
555	7077	Peridinium	Ehrenberg		
556	7077	Peridinium groß (>40µm)	Ehrenberg		
557	7077	Peridinium klein (<25µm)	Ehrenberg		
584	8438	Planktothrix agardhii	(Gomont) Anagnostidis & Komárek		
596	8206	Pseudanabaena limnetica	(Lemmermann) Komárek		
628	7868	Rhodomonas lacustris	Pascher & Ruttner		
627	7894	Rhodomonas lens	Pascher & Ruttner		
963	8076	Romeria	Koczwara in Geitler		
676	7892	Scenedesmus	Meyen		
712	7064	Staurastrum	Meyen ex Ralfs		
717	6795	Stephanodiscus alpinus	Hustedt		
721	6009	Stephanodiscus hantzschii	Grunow		
723	6226	Stephanodiscus minutulus	(Kützing) Cleve & Moeller		
725	6796	Stephanodiscus neoastraea	Håkansson & B.Hickel		
786	7022	Unbestimmte Chlorococcales	(Marchand) Pascher		
794	17457	Unbestimmte Cryptophyceae	Fritsch in G.S.West & Fritsch		
821	8189	Woronichinia naegeliana	(Unger) Elenkin		
829	6789	Zentrale Diatomeen 10-15µm	G.Karsten		
833	6789	Zentrale Diatomeen 15-20µm	G.Karsten		
834	6789	Zentrale Diatomeen 20-25µm	20-25µm G.Karsten		
840	8406789Zentrale Diatomeen 5-10μmG.Karsten				
Pinnsee, tiefste Stelle (MST-Nr: 129063)					

83	6797	Aulacoseira	Thwaites	
146	7446	Chrysococcus	G.A.Klebs	
179	7813	Coelastrum astroideum	De Notaris	
206	7028	Cosmarium Corda ex Ralfs		
222	7032	Cryptomonas erosa/ovata/phaseolus	Ehrenberg	
223	7926	Cryptomonas marssonii	Skuja	
1013	7603	Cryptomonas platyuris	Skuja	
289	7033	Dictyosphaerium pulchellum	Wood	

Plankton	schleswi	g-holsteinischer Seen 2013		
Taxon-				
ID	DV_Nr	TAXONNAME	Autor	
294	7715	Didymocystis	Korshikov	
322	7037	Euglena acus Ehrenberg		
1590	8175	Geitlerinema splendidum (Greville ex Gomont) A		
1600	7773	Gonyostomum	Diesing	
390	7512	Gymnodinium	F.Stein	
385	17085	Gymnodinium uberrimum	(G.J.Allman) Kofoid & Swezy	
1036	17086	Isthmochloron trispinatum	(W. & G.S.West) Skuja	
468	7245	Monoraphidium contortum	(Thuret) Komárková-Legnerová	
471	7913	Monoraphidium komarkovae	Nygaard	
		·	(W. & G.S.West) Komárková-	
474	7247	Monoraphidium tortile	Legnerová	
494	16856	Nitzschia acicularis - Formenkreis	sensu DV 16856	
516	7252	Oocystis parva	W. & G.S.West	
558	7463	Peridinium umbonatum-Komplex	F.Stein	
596	8206	Pseudanabaena limnetica	(Lemmermann) Komárek	
676	7892	Scenedesmus	Meyen	
639	7049	Scenedesmus acuminatus	(Lagerheim) Chodat	
641	7265	Scenedesmus acutus	Meyen	
743	36222	Tabellaria flocculosa	(Roth) Kützing	
782		Unbestimmte Algen	/	
786	7022	Unbestimmte Chlorococcales	(Marchand) Pascher	
794	17457	Unbestimmte Cryptophyceae	Fritsch in G.S.West & Fritsch	
Ukleis	ee. tie	fste Stelle (MST-Nr: 129192)		
52	7123	Ankyra	Fott	
50	7130	Ankyra lanceolata	(Korshikov) Fott	
58	8033	Aphanizomenon	Morren ex Bornet & Flahault	
		F	(Linnaeus) Ralfs ex Bornet &	
54	8031	Aphanizomenon flos-aquae	Flahault	
64	8873	Aphanocapsa	Nägeli	
72	6050	Asterionella formosa	Hassall	
83	6797	Aulacoseira	Thwaites	
75	6798	Aulacoseira ambigua	(Grunow) Simonsen	
78	6785	Aulacoseira granulata	(Ehrenberg) Simonsen	
84	6788	Aulacoseira subarctica	(O.Müller) Haworth	
100	7949	Carteria	Diesing em. Francé	
103	17099	Ceratium furcoides	(Levander) Langhans	
104	7239	Ceratium hirundinella	(O.F.Müller) Dujardin	
117	7021	Chlamydomonas	Ehrenberg	
143	7211	Chrysochromulina parva	Lackey	
158	7973	Closterium aciculare	T.West	
161	7356	Closterium acutum var. variabile	(Lemmermann) Willi Krieger	
179	7813	Coelastrum astroideum	De Notaris	
184	7214	Coelastrum reticulatum	(Dangeard) Senn	
187	8115	Coelosphaerium kuetzingianum	Nägeli	
236	7032	Cryptomonas 30-35µm	Ehrenberg	
		, y, ,		
		1		

Cryptomonas erosa/ovata/phaseolus Ehrenberg

(Hustedt) Round

PANTOCSEK

(M.H.Hohn & Hellerman) Theri-

ot, Stoermer & Håkansson

Cyclostephanos dubius

Cyclotella balatonis

Cyclostephanos invisitatus

7032

6943

6177

36000

222

247

248

3002

Taxon-	DV/ Nr			
	6002	TAXONNAME Cyclotella meneghiniana	Autor Kützing	
260		Cyclotella ocellata Pantocsek		
261 299	6936 7937	Dinobryon divergens	Imhof	
303	7937 7884	Dinobryon sociale		
	/ 004	Eutetramorus/Sphaerocystis	Ehrenberg	
333	0464	Fragilaria	Lunghua	
347	6161	Fragilaria crotonensis	Lyngbye Kitton	
342	6075	Mallomonas		
443	7306 8275	Merismopedia marssonii	Perty	
1630 449		Merismopedia tenuissima	Lemmermann	
	8977	Microcystis aeruginosa	Lemmermann	
452	8153	Oocystis	Kützing A.Braun	
517	7250	,		
546	17300	Peridiniopsis polonicum	(Wołoszyńska) Bourrelly	
556	7077	Peridinium groß (>40µm)	Ehrenberg	
557	7077	Peridinium klein (<25µm)	Ehrenberg	
580	8818	 Planktolyngbya limnetica	(Lemmermann) Komárková- Legnerová & Cronberg	
587	8437	Planktothrix	Anagnostidis & Komárek	
			(de Candolle ex Gomont) Anag-	
586	8440	Planktothrix rubescens	nostidis & Komárek	
596	8206	Pseudanabaena limnetica	(Lemmermann) Komárek	
601	17313	Pseudopedinella erkensis	Skuja	
628	7868	Rhodomonas lacustris	Pascher & Ruttner	
717	6795	Stephanodiscus alpinus	Hustedt	
723	6226	Stephanodiscus minutulus	(Kützing) Cleve & Moeller	
725	6796	Stephanodiscus neoastraea	Håkansson & B.Hickel	
740	7803	Synura	Ehrenberg	
751	7281	Tetraedron minimum	(A.Braun) Hansgirg	
786	7022	Unbestimmte Chlorococcales	(Marchand) Pascher	
794	17457	Unbestimmte Cryptophyceae	Fritsch in G.S.West & Fritsch	
811	7290	Uroglena	Ehrenberg	
853	17098	Woloszynskia	R.H.Thompson	
821	8189	Woronichinia naegeliana	(Unger) Elenkin	
829	6789	Zentrale Diatomeen 10-15µm	G.Karsten	
833	6789	Zentrale Diatomeen 15-20µm	G.Karsten	
840	6789	Zentrale Diatomeen 5-10µm	G.Karsten	
Vierer	See, ti	efste Stelle (MST-Nr: 129050)		
17	8072	Anabaena circinalis	Rabenhorst ex Bornet & Flahault	
21	8032	Anabaena flos-aquae	Brébisson ex Bornet & Flahault	
24	8855	Anabaena lemmermannii	P.G.Richter in Lemmermann	
25	8854	Anabaena macrospora	Klebahn	
26	8913	Anabaena planctonica	Brunnthaler	
49	7844	Ankyra judayi	(G.M.Smith) Fott	
50	7130	Ankyra lanceolata	(Korshikov) Fott	
54	8031	Aphanizomenon flos-aquae	(Linnaeus) Ralfs ex Bornet &	
55	8096	Aphanizomenon gracile	Flahault	
56	8845	Aphanizomenon issatschenkoi	Lemmermann (Usacev) Proshkina-Lavrenko	
1510	8802	Aphanizomenon yezoense	Watanabe	
64	8873	Aphanocapsa	Nägeli	
68	8100	Aphanothece	Nägeli	
72	6050	Asterionella formosa	Hassall	

Asterionella formosa

Hassall

72

6050

Taxon- ID	DV_Nr	TAXONNAME	Autor	
75	6798	Aulacoseira ambigua	(Grunow) Simonsen	
78	6785	Aulacoseira granulata	(Ehrenberg) Simonsen	
81	6907	Aulacoseira islandica	(O.Müller) Simonsen	
103	17099	Ceratium furcoides	(Levander) Langhans	
104	7239	Ceratium hirundinella	(O.F.Müller) Dujardin	
122	7207	Chlorella	Beijerinck	
143	7211	Chrysochromulina parva	Lackey	
146	7446	Chrysococcus	G.A.Klebs	
158	7973	Closterium aciculare	T.West	
161	7356	Closterium acutum var. variabile	(Lemmermann) Willi Krieger	
179	7813	Coelastrum astroideum	De Notaris	
187	8115	Coelosphaerium kuetzingianum	Nägeli	
236	7032	Cryptomonas 30-35µm	Ehrenberg	
237	7032	Cryptomonas 35-40µm	Ehrenberg	
220	7398	Cryptomonas curvata	Ehrenberg em. Penard	
222	7032	Cryptomonas erosa/ovata/phaseolus	Ehrenberg	
223	7926	Cryptomonas marssonii	Skuja	
246	8835	Cyanodictyon	Pascher	
1260	16791	Cyclostephanos delicatus	(Genkal) Casper & Scheffler	
247	6943	Cyclostephanos dubius	(Hustedt) Round	
3002	36000	Cyclotella balatonis	PANTOCSEK	
260	6002	Cyclotella meneghiniana	Kützing	
261	6936	Cyclotella ocellata	Pantocsek	
283	6210	Diatoma tenuis	C.Agardh	
299	7937	Dinobryon divergens	Imhof	
303	7884	Dinobryon sociale	Ehrenberg	
1584	7920	Fotterella tetrachlorelloides	R.Buck	
347	6161	Fragilaria	Lyngbye	
342	6075	Fragilaria crotonensis	Kitton	
352	16658	Fragilaria ulna var. ulna	(Nitzsch) Lange-Bertalot	
459	8024	Microcystis	Kützing ex Lemmermann	
462	8710	Microcystis wesenbergii	(Komárek) Komárek	
477	7089	Mougeotia	C.Agardh	
515	7871	Oocystis marssonii	Lemmermann	
546	17300	Peridiniopsis polonicum	(Wołoszyńska) Bourrelly	
555	7077	Peridinium	Ehrenberg	
557	7077	Peridinium klein (<25µm)	Ehrenberg	
558	7463	Peridinium umbonatum-Komplex	F.Stein	
568	7997	Phacus pyrum	(Ehrenberg) F.Stein	
582	7898	Planktosphaeria gelatinosa	G.M.Smith	
302	7000	Trankospilasila gelatilissa	G.M.Smith (Gomont) Anagnostidis &	
584	8438	Planktothrix agardhii	Komárek	
596	8206	Pseudanabaena limnetica	(Lemmermann) Komárek	
628	7868	Rhodomonas lacustris	Pascher & Ruttner	
627	7894	Rhodomonas lens	Pascher & Ruttner	
676	7892	Scenedesmus	Meyen	
712	7064	Staurastrum	Meyen ex Ralfs	
717	6795	Stephanodiscus alpinus	Hustedt	
721	6009	Stephanodiscus hantzschii	Grunow	
723	6226	Stephanodiscus minutulus	(Kützing) Cleve & Moeller	
725	6796	Stephanodiscus neoastraea	Håkansson & B.Hickel	

Taxon-				
ID	DV_Nr	TAXONNAME	Autor	
748	7279	Tetraedron caudatum	(Corda) Hansgirg	
751	7281	Tetraedron minimum	(A.Braun) Hansgirg	
794	17457	Unbestimmte Cryptophyceae	Fritsch in G.S.West & Fritsch	
803	6947	Unbestimmte pennate Diatomeen	G.Karsten	
811	7290	Uroglena	Ehrenberg	
853	17098	Woloszynskia	R.H.Thompson	
821	8189	Woronichinia naegeliana	(Unger) Elenkin	
833	6789	Zentrale Diatomeen 15-20µm	G.Karsten	
834	6789	Zentrale Diatomeen 20-25µm	G.Karsten	
835	6789	Zentrale Diatomeen 25-30µm	G.Karsten	
836	6789	Zentrale Diatomeen 30-35µm	G.Karsten	
837	6789	Zentrale Diatomeen 35-40µm	G.Karsten	

11.4 Artenlisten Profundaldiatomeen Seen 2013

Die Messstellen und die darin erfassten Profundaldiatomeen sind alphabetisch geordnet. Die DV-Nummern haben den Stand Oktober 2007 (gleiche Nummern wie für die Di-Prof-Bestimmung).

MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	6146	Cyclotella	(KUETZING) BREBISSON
	Behlendorfer See, tiefs-				(GRUNOW)
129027	te Stelle	30.9.13	6204	Cyclotella radiosa	LEMMERMANN
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	16099	Cyclotella delicatula	HUSTEDT
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	6050		HASSALL
	Behlendorfer See, tiefs-			Achnanthes minutis-	
129027	te Stelle	30.9.13	6014	sima	KUETZING
	Behlendorfer See, tiefs-			Fragilaria crotonen-	
129027	te Stelle	30.9.13	6075	sis	KITTON
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	6936	•	PANTOCSEK
	Behlendorfer See, tiefs-			Cyclostephanos du-	
129027	te Stelle	30.9.13	6943	bius	(HUSTEDT) ROUND
400007	Behlendorfer See, tiefs-	00.040			(////==================================
129027	te Stelle	30.9.13	6983	· · · · · · · · · · · · · · · · · · ·	(KUETZING) GRUNOW
420027	Behlendorfer See, tiefs-	20.042	6226	Stephanodiscus mi-	(KUETZING) CLEVE &
129027	te Stelle	30.9.13	6226	nutulus	MOELLER
420027	Behlendorfer See, tiefs-	20.042	6024	Cocconeis placentu-	FURENDERG
129027	te Stelle	30.9.13	6021	la · · · ·	EHRENBERG
120027	Behlendorfer See, tiefs- te Stelle	20.0.12	COOF	Cymbella microce-	CDUNOW
129027		30.9.13	6895	phala	GRUNOW
120027	Behlendorfer See, tiefs- te Stelle	20.0.12	6070	Fragilaria ninnata	FUDENDEDC
129027	Behlendorfer See, tiefs-	30.9.13	6078	Fragilaria pinnata	EHRENBERG
129027	te Stelle	30.9.13	6088	Navicula cari	EHRENBERG
123027	Behlendorfer See, tiefs-	30.9.13	0000	Stephanodiscus ne-	LIIKLINDLIKO
129027	te Stelle	30.9.13	6796	oastraea	HAKANSSON & B.HICKEL
123027	Behlendorfer See, tiefs-	30.3.13	0730	Cyclotella kuetzingi-	TIANANSSON & B.HICKEL
129027	te Stelle	30.9.13	6055	ana	THWAITES
123027	Behlendorfer See, tiefs-	30.3.13	0033	dia	1114741125
129027	te Stelle	30.9.13	6990	Navicula	BORY DE SAINT-VINCENT
	Behlendorfer See, tiefs-			Cocconeis ne-	
129027	te Stelle	30.9.13	6306	othumensis	KRAMMER
	Behlendorfer See, tiefs-			Fragilaria brevistria-	
129027	te Stelle	30.9.13	6388	ta	GRUNOW
	Behlendorfer See, tiefs-			Fragilaria construens	
129027	te Stelle	30.9.13	6828	f. venter	(EHRENBERG) HUSTEDT
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	6405	Fragilaria nanana	LANGE-BERTALOT
	Behlendorfer See, tiefs-			Achnanthes conspi-	
129027	te Stelle	30.9.13	6855	cua	A.MAYER
	Behlendorfer See, tiefs-			Stephanodiscus	
129027	te Stelle	30.9.13	6009	hantzschii	GRUNOW

	semeswig-noistennischer Se	<u> </u>			
MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
	Behlendorfer See, tiefs-			Geissleria cum-	(L.KALBE) LANGE-
129027	te Stelle	30.9.13	16654	merowi	BERATALOT
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	6794	Gomphonema	EHRENBERG
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	6180	Achnanthes clevei	GRUNOW
	Behlendorfer See, tiefs-			Fragilaria ulna acus -	sensu KRAMMER &
129027	te Stelle	30.9.13	16575	Sippen	LANGE-BERTALOT
	Behlendorfer See, tiefs-			Fragilaria capucina	sensu KRAMMER &
129027	te Stelle	30.9.13	16571	distans - Sippen	LANGE-BERTALOT
	Behlendorfer See, tiefs-			Navicula capitatora-	
129027	te Stelle	30.9.13	6910	diata	H.GERMAIN
	Behlendorfer See, tiefs-			Navicula crypto-	
129027	te Stelle	30.9.13	16307	tenelloides	LANGE-BERTALOT
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	6103	Navicula radiosa	KUETZING
	Behlendorfer See, tiefs-			Navicula reichardti-	
129027	te Stelle	30.9.13	6221	ana	LANGE-BERTALOT
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	6556	Navicula utermoehlii	HUSTEDT
				Achnanthes lanceo-	
	Behlendorfer See, tiefs-			lata ssp. frequentis-	
129027	te Stelle	30.9.13	6260	sima	LANGE-BERTALOT
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	6798	Aulacoseira ambigua	(GRUNOW) SIMONSEN
	Behlendorfer See, tiefs-			Cyclostephanos deli-	(GENKAL) CASPER &
129027	te Stelle	30.9.13	16791	catus	SCHEFFLER
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	6887	Epithemia sorex	KUETZING
	Behlendorfer See, tiefs-				
129027	te Stelle	30.9.13	6034	Fragilaria construens	(EHRENBERG) GRUNOW
	Behlendorfer See, tiefs-			Fragilaria capucina	
129027	te Stelle	30.9.13	6392		(OESTRUP) HUSTEDT
	Behlendorfer See, tiefs-			Fragilaria capucina	(RABENHORST)
129027	te Stelle	30.9.13	6393	var. mesolepta	RABENHORST
	Behlendorfer See, tiefs-			Fragilaria capucina	(GRUNOW) KRAMMER &
129027	te Stelle	30.9.13	6394	var. perminuta	LANGE-BERTALOT
400007	Behlendorfer See, tiefs-	00.040	6504	Navicula ignota var.	(HUSTEDT) LANGE-
129027	te Stelle	30.9.13	6501	acceptata	BERTALOT
120027	Behlendorfer See, tiefs-	20.0.42	6400	Navicula hofman-	LANCE DEPTALOT
129027	te Stelle	30.9.13	6499	niae	LANGE-BERTALOT
120027	Behlendorfer See, tiefs-	20.0.42	16260	Nandarda ada a	LANCE DEPTALOT
129027	te Stelle	30.9.13	16368	Navicula seibigiana	LANGE-BERTALOT
420027	Behlendorfer See, tiefs-	20.042	65.47		E DEIGUADOT
129027	te Stelle	30.9.13	6547	Navicula subalpina	E.REICHARDT
420027	Behlendorfer See, tiefs-	20.042	6070	AL	LANCE REPTALOT
129027	te Stelle	30.9.13	6870	Navicula trivialis	LANGE-BERTALOT
120027	Behlendorfer See, tiefs-	20.0.12	16570	Navioula trankinatri	LANCE DEPTALOT
129027	te Stelle	30.9.13	16578	Navicula trophicatrix	LANGE-BERTALOT
120027	Behlendorfer See, tiefs-	20.0.12	6067	Navigula gastrum	(EUDENDEDG) VUITTING
129027	te Stelle	30.9.13	6967	Navicula gastrum	(EHRENBERG) KUETZING
120027	Behlendorfer See, tiefs-	20.0.12	6255	Achnanthes jour-	HEDIDALID
129027	te Stelle	30.9.13	6255	Sacense	HERIBAUD
120027	Behlendorfer See, tiefs-	20.0.12	6224	Rhoicosphenia ab-	(C.AGARDH) LANGE-
129027	te Stelle	30.9.13	6224	breviata	BERTALOT

MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
	Bothkamper See, tiefste			Aulacoseira granula-	
129081	Stelle	17.9.13	6785	ta	(EHRENBERG) SIMONSEN
	Bothkamper See, tiefste				
129081	Stelle	17.9.13	6798	0	(GRUNOW) SIMONSEN
	Bothkamper See, tiefste			Fragilaria construens	
129081	Stelle	17.9.13	6828		(EHRENBERG) HUSTEDT
100001	Bothkamper See, tiefste	47.040	60.40	Cyclostephanos du-	(11115777777777777777777777777777777777
129081	Stelle	17.9.13	6943	bius	(HUSTEDT) ROUND
120001	Bothkamper See, tiefste Stelle	17.0.12	6000	Stephanodiscus	CDUNOW
129081	Bothkamper See, tiefste	17.9.13	6009	hantzschii Fragilaria brevistria-	GRUNOW
129081	Stelle	17.9.13	6388	ta	GRUNOW
123001	Bothkamper See, tiefste	17.3.13	0300	tu	CHOIVOV
129081	Stelle	17.9.13	6034	Fragilaria construens	(EHRENBERG) GRUNOW
	Bothkamper See, tiefste			Fragilaria construens	
129081	Stelle	17.9.13	16534	f. exigua	(W.SMITH) HUSTEDT
	Bothkamper See, tiefste				
129081	Stelle	17.9.13	6078	Fragilaria pinnata	EHRENBERG
	Bothkamper See, tiefste			Achnanthes lanceo-	sensu KRAMMER &
129081	Stelle	17.9.13	6244		LANGE-BERTALOT
	Bothkamper See, tiefste			Cyclotella meneghi-	
129081	Stelle	17.9.13	6002	niana	KUETZING
	Bothkamper See, tiefste				
129081	Stelle	17.9.13	6011	Nitzschia palea	(KUETZING) W.SMITH
120001	Bothkamper See, tiefste Stelle	17 0 12	6002	A manh a ra na dia ulus	(KITETZINIC) CRUNIOW
129081	Bothkamper See, tiefste	17.9.13	6983	Amphora pediculus Cocconeis ne-	(KUETZING) GRUNOW
129081	Stelle	17.9.13	6306	othumensis	KRAMMER
123001	Stelle	17.5.15	0300	Ottidificiisis	(M.H.HOHN &
					HELLERMANN)
					THERIOT,
	Bothkamper See, tiefste			Cyclostephanos invi-	STOERMER &
129081	Stelle	17.9.13	6177	sitatus	HAKANSSON
	Bothkamper See, tiefste				
129081	Stelle	17.9.13	6161		LYNGBYE
	Bothkamper See, tiefste			Stephanodiscus mi-	(KUETZING) CLEVE &
129081	Stelle	17.9.13	6226	nutulus	MOELLER
	Bothkamper See, tiefste				
129081	Stelle	17.9.13	6038	•	(KUETZING) KUETZING
120001	Bothkamper See, tiefste	17.0.12	1.0701	Cyclostephanos deli-	(GENKAL) CASPER &
129081	Stelle Rethkamper See, tiefste	17.9.13	16791	catus	SCHEFFLER
129081	Bothkamper See, tiefste Stelle	17.9.13	6031	Cymatopleura solea	(BREBISSON) W.SMITH
123001	Bothkamper See, tiefste	17.5.13	0031	Fragilaria construens	(BALDISSOIN) W.SIVIIIII
129081	Stelle	17.9.13	6397	f. binodis	(EHRENBERG) HUSTEDT
	Bothkamper See, tiefste		2337	Gomphonema	(HORNEMANN)
129081	Stelle	17.9.13	6867	olivaceum	BREBISSON
	Bothkamper See, tiefste			Gomphonema par-	
129081	Stelle	17.9.13	16572	vulum - Sippen	
	Bothkamper See, tiefste			Gyrosigma acumina-	
129081	Stelle	17.9.13	6036	tum	(KUETZING) RABENHORST
	Bothkamper See, tiefste				
129081	Stelle	17.9.13	6868	Navicula capitata	EHRENBERG
42222	Bothkamper See, tiefste	47045		N	CDUNOW.
129081	Stelle	17.9.13	6470	Navicula costulata	GRUNOW

MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
	Bothkamper See, tiefste			_	
129081	Stelle	17.9.13	6026	Meridion circulare	(GREVILLE) C.AGARDH
	Bothkamper See, tiefste				
129081	Stelle	17.9.13	6990	Navicula	BORY DE SAINT-VINCENT
120001	Bothkamper See, tiefste	17.0.12	6224	Rhoicosphenia ab-	(C.AGARDH) LANGE-
129081	Stelle Bothkamper See, tiefste	17.9.13	6224	breviata Stephanodiscus ne-	BERTALOT
129081	Stelle	17.9.13	6796	oastraea	HAKANSSON & B.HICKEL
123001	Dobersd. See vor Schles.,	17.3.13	0750	Odstraca	(GRUNOW)
129009	tiefste St.	12.9.13	6204	Cyclotella radiosa	LEMMERMANN
	Dobersd. See vor Schles.,			Cyclostephanos du-	
129009	tiefste St.	12.9.13	6943	bius	(HUSTEDT) ROUND
	Dobersd. See vor Schles.,			Fragilaria brevistria-	
129009	tiefste St.	12.9.13	6388	ta	GRUNOW
	Dobersd. See vor Schles.,				,
129009	tiefste St.	12.9.13	6798	Aulacoseira ambigua	(GRUNOW) SIMONSEN
129009	Dobersd. See vor Schles.,	12.9.13	6050	Asterionella formosa	ПУССИП
129009	tiefste St.	12.9.15	6030	Aulacoseira granula-	HASSALL
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6785	ta	(EHRENBERG) SIMONSEN
123003	Dobersd. See vor Schles.,	12.3.13	0,03	Fragilaria crotonen-	(ETHEROENS) SINIONSER
129009	tiefste St.	12.9.13	6075	sis	KITTON
	Dobersd. See vor Schles.,				
129009	tiefste St.	12.9.13	6983	Amphora pediculus	(KUETZING) GRUNOW
	Dobersd. See vor Schles.,			Stephanodiscus ne-	
129009	tiefste St.	12.9.13	6796	oastraea	HAKANSSON & B.HICKEL
	Dobersd. See vor Schles.,			Cocconeis ne-	
129009	tiefste St.	12.9.13	6306	othumensis	KRAMMER
120000	Dobersd. See vor Schles.,	12 0 12	COLL	Cyclotella kuetzingi-	THAMAITEC
129009	tiefste St.	12.9.13	6055	ana	THWAITES
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6078	Fragilaria pinnata	EHRENBERG
	Dobersd. See vor Schles.,			Cocconeis placentu-	
129009	tiefste St.	12.9.13	6021	la	EHRENBERG
	Dobersd. See vor Schles.,				(HERIBAUD) LANGE-
129009	tiefste St.	12.9.13	16669	Fragilaria martyi	BERTALOT
420000	Dobersd. See vor Schles.,	12012	6526		LUICTEDT
129009	tiefste St. Dobersd. See vor Schles.,	12.9.13	6536	Navicula rotunda	HUSTEDT
129009	tiefste St.	12.9.13	6025	Nitzschia fonticola	(GRUNOW) GRUNOW
	Dobersd. See vor Schles.,			Achnanthes minutis-	
129009	tiefste St.	12.9.13	6014	sima	KUETZING
	Dobersd. See vor Schles.,			Fragilaria ulna acus -	sensu KRAMMER &
129009	tiefste St.	12.9.13	16575	Sippen	LANGE-BERTALOT
	Dobersd. See vor Schles.,			Fragilaria capucina	sensu KRAMMER &
129009	tiefste St.	12.9.13	16571	distans - Sippen	LANGE-BERTALOT
120000	Dobersd. See vor Schles.,	12.0.42	6202	Fragilaria capucina	(OECTRUD) UNICTED
129009	tiefste St.	12.9.13	6392	•	(OESTRUP) HUSTEDT
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6828	Fragilaria construens f. venter	(EHRENBERG) HUSTEDT
123003	Dobersd. See vor Schles.,	14.3.13	0020	i. venter	(FUNCIADEI/O) HOSTEDI
129009	tiefste St.	12.9.13	6180	Achnanthes clevei	GRUNOW
	Dobersd. See vor Schles.,				
129009	tiefste St.	12.9.13	6990	Navicula	BORY DE SAINT-VINCENT
129009	Dobersd. See vor Schles.,	12.9.13	6101	Navicula pupula	KUETZING
123003	tiefste St.	12.5.15	6101	ivavicuia pupula	NUETZINU

MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
	Dobersd. See vor Schles.,			Achnanthes lanceo-	sensu KRAMMER &
129009	tiefste St.	12.9.13	6244	lata - Komplex	LANGE-BERTALOT
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6990	Navicula	BORY DE SAINT-VINCENT
123003	Dobersd. See vor Schles.,	12.5.15	0550	INAVICUIA	BONT DE SAINT-VINCEINT
129009	tiefste St.	12.9.13	6541	Navicula scutelloides	W.SMITH
	Dobersd. See vor Schles.,				
129009	tiefste St.	12.9.13	6981		(SCHUMANN) CLEVE
120000	Dobersd. See vor Schles.,	12 0 12	6720	Cocconeis placentula var. lineata	(EHRENBERG) VAN HEURCK
129009	tiefste St. Dobersd. See vor Schles.,	12.9.13	6728	la var. imeata	HEURCK
129009	tiefste St.	12.9.13	6814	Epithemia	KUETZING
	Dobersd. See vor Schles.,			Geissleria cum-	(L.KALBE) LANGE-
129009	tiefste St.	12.9.13	16654	merowi	BERATALOT
	Dobersd. See vor Schles.,			Gomphonema	(HORNEMANN)
129009	tiefste St.	12.9.13	6867	olivaceum	BREBISSON
400000	Dobersd. See vor Schles.,	40.040	6407	Gomphonema pumi-	(GRUNOW) E.REICHARDT
129009	tiefste St.	12.9.13	6437	lum Navicula reichardti-	& LANGE-BERTALOT
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6221		LANGE-BERTALOT
129009	Dobersd. See vor Schles.,	12.9.13	0221	ana	LANGE-BERTALOT
129009	tiefste St.	12.9.13	6597	Nitzschia lacuum	LANGE-BERTALOT
	Dobersd. See vor Schles.,			Achnanthes jour-	
129009	tiefste St.	12.9.13	6255	sacense	HERIBAUD
120000	Dobersd. See vor Schles.,	12.0.12	6202	A	L/DANANAED
129009	tiefste St. Dobersd. See vor Schles.,	12.9.13	6282	Amphora aequalis	KRAMMER
129009	tiefste St.	12.9.13	6295	Brachysira neoexilis	LANGE-BERTALOT
	Dobersd. See vor Schles.,			-	
129009	tiefste St.	12.9.13	6020	Cocconeis pediculus	EHRENBERG
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	16665	Cymbella compacta	OESTRUP
129009		12.9.13	10003	Cymbella microce-	OESTROP
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6895	-	GRUNOW
	Dobersd. See vor Schles.,			Diatoma monilifor-	
129009	tiefste St.	12.9.13	6209	mis	KUETZING
	Dobersd. See vor Schles.,			Fragilaria construens	
129009	tiefste St.	12.9.13	6397	f. binodis	(EHRENBERG) HUSTEDT
120000	Dobersd. See vor Schles.,	12 0 12	6237	Fragilaria parasitica	(W.SMITH) GRUNOW
129009	tiefste St.	12.9.13	0237	Fragilaria capucina	(GRUNOW) KRAMMER &
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6394	var. perminuta	LANGE-BERTALOT
	Dobersd. See vor Schles.,			run peniniuta	
129009	tiefste St.	12.9.13	6473	Navicula decussis	OESTRUP
120000	Dobersd. See vor Schles.,	12.0.12	6704	Comphana	CHDENDEDC
129009	tiefste St.	12.9.13	6794	Gomphonema Gomphonema par-	EHRENBERG
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	16572	vulum - Sippen	
123003	Dobersd. See vor Schles.,	12.3.13	100,72	Gomphonema subti-	
129009	tiefste St.	12.9.13	6440	le	EHRENBERG
	Dobersd. See vor Schles.,				
129009	tiefste St.	12.9.13	6088	Navicula cari	EHRENBERG
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6089	Navicula cincta	(EHRENBERG) RALFS
123003	Dobersd. See vor Schles.,	12.7.13	0003	Navicula cryptoce-	(ETIMENDENO) NACI 3
129009	tiefste St.	12.9.13	6010	phala	KUETZING
	Dobersd. See vor Schles.,			Navicula crypto-	
129009	tiefste St.	12.9.13	6889	tenella	LANGE-BERTALOT

MS NR	M NAME1	DATUM	DV NR	TAXON DV	AUTOR DV
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6015	Navicula gregaria	DONKIN
123003	Dobersd. See vor Schles.,	12.3.13	0013	ivavicula gregaria	METZELTIN, WITKOWSKI
129009	tiefste St.	12.9.13	16584	Navicula moskalii	& LANGE-BERTALOT
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6556	Navicula utermoehlii	HUSTEDT
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6991	Nitzschia angustata	(W.SMITH) GRUNOW
129009	Dobersd. See vor Schles., tiefste St.	12.9.13	6226	Stephanodiscus mi- nutulus	(KUETZING) CLEVE & MOELLER
129002	Garrensee, tiefste Stelle	25.9.13	6409	Fragilaria tenera	(W.SMITH) LANGE- BERTALOT
129002	Garrensee, tiefste Stelle	25.9.13	6050	Asterionella formosa	HASSALL
129002	Garrensee, tiefste Stelle	25.9.13	6990	Navicula	BORY DE SAINT-VINCENT
129002	Garrensee, tiefste Stelle	25.9.13	6014	Achnanthes minutis- sima	KUETZING
				Fragilaria construens	
129002	Garrensee, tiefste Stelle	25.9.13	6828	f. venter	(EHRENBERG) HUSTEDT
129002	Garrensee, tiefste Stelle	25.9.13	16373	Navicula submuralis	HUSTEDT
129002	Garrensee, tiefste Stelle	25.9.13	6078	Fragilaria pinnata	EHRENBERG
129002	Garrensee, tiefste Stelle	25.9.13	6276	Achnanthes sub- atomoides	(HUSTEDT) LANGE- BERTALOT & R.E.M.ARCHIBALD
129002	Garrensee, tiefste Stelle	25.9.13	6529	Navicula pseudos- cutiformis	HUSTEDT
129002	Garrensee, tiefste Stelle	25.9.13	6448	Navicula absoluta	HUSTEDT
129002	Garrensee, tiefste Stelle	25.9.13	6095	Navicula minima	GRUNOW
129002	Garrensee, tiefste Stelle	25.9.13	6011	Nitzschia palea	(KUETZING) W.SMITH
129002	Garrensee, tiefste Stelle	25.9.13	6091	Tabellaria flocculosa	(ROTH) KUETZING
129002	Garrensee, tiefste Stelle	25.9.13	6388	Fragilaria brevistria- ta	GRUNOW
129002	Garrensee, tiefste Stelle	25.9.13	6936	Cyclotella ocellata	PANTOCSEK
129002	Garrensee, tiefste Stelle	25.9.13	16572	Gomphonema par- vulum - Sippen	
129002	Garrensee, tiefste Stelle	25.9.13	6531	Navicula pseu- doventralis	HUSTEDT
129002	Garrensee, tiefste Stelle	25.9.13	16143	Achnanthes rossii	HUSTEDT
129002	Garrensee, tiefste Stelle	25.9.13	6101	Navicula pupula	KUETZING
129002	Garrensee, tiefste Stelle	25.9.13	6681	Stauroneis kriegerii	PATRICK
129002	Garrensee, tiefste Stelle	25.9.13	6063	Cymbella navicu- liformis	AUERSWALD
129002	Garrensee, tiefste Stelle	25.9.13	6496	Navicula heimansio- ides	LANGE-BERTALOT
129002	Garrensee, tiefste Stelle	25.9.13	6536	Navicula rotunda	HUSTEDT
	Communication Challes		6045	Ashmanthas linearis	(W.SMITH) GRUNOW sensu auct.
129002	Garrensee, tiefste Stelle	25.9.13	6045	Achnanthes linearis	nonnull
129002	Garrensee, tiefste Stelle Garrensee, tiefste Stelle	25.9.13 25.9.13	6295	Brachysira neoexilis Cocconeis placentu-	LANGE-BERTALOT EHRENBERG
123002	Garrensee, tierste stelle	23.3.13	0021	Diatoma monilifor-	LIMLINDENG
129002	Garrensee, tiefste Stelle	25.9.13	6209	mis	KUETZING

129002 Garrensee, tiefste Stelle 25.9.13 6.034 Fragilaria construents (EHRENBERG) CRUNOW Fragilaria capucina CANTES CANT	MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
129002 Garrensee, tiefste Stelle 25.9.13 6394 var. perminuta LANGE-BERTALOT	129002	Garrensee, tiefste Stelle	25.9.13	6034	Fragilaria construens	(EHRENBERG) GRUNOW
129002 Garrensee, tiefste Stelle 25.9.13 6394 var. perminuta CANGE-BERTALOT		,			_	,
129002 Garrensee, tiefste Stelle 25.9.13 6188 Comphonema trun-	129002	Garrensee, tiefste Stelle	25.9.13	6394	•	
129002 Garrensee, tiefste Stelle 25.9.13 6188 catum		,			•	
29002 Garrensee, tiefste Stelle 25.9.13 6705 Achnanthes laterostrata HUSTEDT	129002	Garrensee, tiefste Stelle	25.9.13	6188	•	EHRENBERG
129002 Garrensee, tiefste Stelle 25.9.13 6156 Navicula laterostrata HUSTEDT		,			Achnanthes la-	
129002 Garrensee, tiefste Stelle 25.9.13 6156 Navicula laterostrata HUSTEDT	129002	Garrensee, tiefste Stelle	25.9.13	6705	terostrata	HUSTEDT
129002 Garrensee, tiefste Stelle 25.9.13 6022 phala KUETZING					Navicula laterostrata	
129002 Garrensee, tiefste Stelle 25.9.13 6022 phala KUETZING 129002 Garrensee, tiefste Stelle 25.9.13 6648 Navicula absoluta HUSTEDT 129002 Garrensee, tiefste Stelle 25.9.13 6605 Nitzschia perminuta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6607 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6608 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6608 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6680 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6680 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6680 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6680 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6680 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6680 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6680 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6680 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6680 Navicula absoluta EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6680 Navicula absoluta EHRENBERG 129172 te St. 16.9.13 6388 Tagilaria bacillum EHRENBERG 129172 te St. 16.9.13 6983 Amphora pediculus (KUETZING) GLEVE & Navicula Großer Binnensee, tiefste 16.9.13 6785 Navicula absoluta EHRENBERG 129172 te St. 16.9.13 6026 Nitzschia fonticola (GRUNOW) CENTRAL	123002	darrensee, tierste stelle	23.3.13	0130		HOSTEDT
129002 Garrensee, tiefste Stelle 25.9.13 6448 Navicula absoluta HUSTEDT (GRUNOW)	129002	Garrancoa tiafeta Stalla	25 9 13	6022		KLIETZING
129002 Garrensee, tiefste Stelle 25.9.13 6605 Nitzschia perminuta M.PERAGALLO						
129002 Garrensee, tiefste Stelle 25.9.13 6605 Nitzschia perminuta M.PERAGALLO	129002	Garrensee, tiefste Stelle	25.9.13	6448	Navicula absoluta	
129002 Garrensee, tiefste Stelle 25.9.13 6087 Navicula bacillum EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6087 Navicula bacillum EHRENBERG 129002 Garrensee, tiefste Stelle 25.9.13 6080 var. gracilis (EHRENBERG) BRUN 129002 Garrensee, tiefste Stelle 25.9.13 6266 nutulus MOELLER 129172 te St. 16.9.13 6388 ta Cyclostephanodiscus mi- 129172 te St. 16.9.13 16791 catus Großer Binnensee, tiefs- 129172 te St. 16.9.13 6983 Amphora pediculus (KUETZING) GRUNOW 129172 te St. 16.9.13 6785 Amphora pediculus (KUETZING) GRUNOW 129172 te St. 16.9.13 6785 ta GRUNOW GRUNOW GRUNOW 129172 te St. 16.9.13 6785 ta GRUNOW GRUNOW GRUNOW 129172 te St. 16.9.13 6785 ta GRUNOW GRUNOW GRUNOW 129172 te St. 16.9.13 6828 fa GRUNOW GRUNOW GRUNOW 129172 te St. 16.9.13 6828 fa GRUNOW 129172 te St. 16.9.13 6828 fa GRUNOW 129172 te St. 16.9.13 6266 Amphora libyca GRUNOW 129172 te St. 16.9.13 6800 Amphora libyca BERTALOT 129172 te St. 16.9.13 6002 fragilaria pinnata EHRENBERG 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) W.SMITH 129172 te St. 16.9.13 6004 Amphora ovalis GRUNOW 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ova	400000		25.040	6605		*
129002 Garrensee, tiefste Stelle 25.9.13 6687 Navicula bacillum Stauroneis anceps var. gracilis Stephanodiscus minutulus MOELLER Fragilaria brevistriatus Stephanodiscus minutulus Großer Binnensee, tiefste Stelle 16.9.13 6388 ta GRUNOW (GENKAL) CASPER & SCHEFFLER GORGER Binnensee, tiefste Stelle 16.9.13 6791 catus Großer Binnensee, tiefste Stelle 16.9.13 6791 catus Großer Binnensee, tiefste Stelle 16.9.13 6791 catus Großer Binnensee, tiefste Stelle 16.9.13 6792 catus Großer Binnensee, tiefste Stelle 16.9.13 6792 catus Großer Binnensee, tiefste Stelle 16.9.13 6793 Amphora pediculus (KUETZING) GRUNOW	129002	Garrensee, tiefste Stelle	25.9.13	6605		M.PERAGALLO
129002 Garrensee, tiefste Stelle 25.9.13 6680 var. gracilis Stephanodiscus mi- 129002 Garrensee, tiefste Stelle 25.9.13 6226 nutulus MOELLER Großer Binnensee, tiefs- 129172 te St. 16.9.13 6983 Amphora pediculus (KUETZING) GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6983 Amphora pediculus (KUETZING) GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6983 Amphora pediculus (KUETZING) GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6983 Amphora pediculus (KUETZING) GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6983 Amphora pediculus (KUETZING) GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6785 ta (EHRENBERG) SIMONSEN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6226 nutulus (KUETZING) GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6226 nutulus (KUETZING) CLEVE & MOELLER Großer Binnensee, tiefs- 129172 te St. 16.9.13 6180 Achnanthes clevei GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6860 Amphora libyca BERTALOT Großer Binnensee, tiefs- 129172 te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- 129172 te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- 129172 te St. 16.9.13 6002 niana (KUETZING) W.SMITH Großer Binnensee, tiefs- 129172 te St. 16.9.13 6002 niana (KUETZING) Großer Binnensee, tiefs- 129172 te St. 16.9.13 6002 niana (KUETZING) Großer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) Großer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) Großer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) Großer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) Großer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) Großer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) Großer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING)	129002	Garrensee, tiefste Stelle	25.9.13	6151	Pinnularia	EHRENBERG
129002 Garrensee, tiefste Stelle 25.9.13 6680 var. gracilis (EHRENBERG) BRUN Stephanodiscus minutulus MOELLER Großer Binnensee, tiefste Stelle 25.9.13 6388 ta GRUNOW GENKAL) CASPER & SCHEFFLER GROßer Binnensee, tiefste St. 16.9.13 6388 ta GRUNOW GENKAL) CASPER & SCHEFFLER GROßer Binnensee, tiefste St. 16.9.13 6983 Amphora pediculus (KUETZING) GRUNOW GENKAL) CASPER & SCHEFFLER GROßer Binnensee, tiefste St. 16.9.13 6025 Nitzschia fonticola (GRUNOW) GRUNOW GRUNOW GROWNOW GROWNOW GROWNOW GROWNOW GRUNOW GROWNOW GROWNO	129002	Garrensee, tiefste Stelle	25.9.13	6087	Navicula bacillum	EHRENBERG
129002 Garrensee, tiefste Stelle 25.9.13 6680 var. gracilis (EHRENBERG) BRUN Stephanodiscus minutulus MOELLER Großer Binnensee, tiefste Stelle 25.9.13 6388 ta GRUNOW GENKAL) CASPER & SCHEFFLER GROßer Binnensee, tiefste St. 16.9.13 6388 ta GRUNOW GENKAL) CASPER & SCHEFFLER GROßer Binnensee, tiefste St. 16.9.13 6983 Amphora pediculus (KUETZING) GRUNOW GENKAL) CASPER & SCHEFFLER GROßer Binnensee, tiefste St. 16.9.13 6025 Nitzschia fonticola (GRUNOW) GRUNOW GRUNOW GROWNOW GROWNOW GROWNOW GROWNOW GRUNOW GROWNOW GROWNO		·			Stauroneis anceps	
129002 Garrensee, tiefste Stelle 25.9.13 6226 nutulus MOELLER	129002	Garrensee, tiefste Stelle	25.9.13	6680	·	(EHRENBERG) BRUN
129002 Garrensee, tiefste Stelle Großer Binnensee, tiefs- te St. 16.9.13 6983 Amphora pediculus Großer Binnensee, tiefs- te St. 16.9.13 6025 Nitzschia fonticola Großer Binnensee, tiefs- te St. Großer Binnensee, tiefs- te St. Großer Binnensee, tiefs- te St. 16.9.13 6785 ta (EHRENBERG) SIMONSEN Fragilaria construens Großer Binnensee, tiefs- 129172 te St. Großer Binnensee, tiefs- 129172		,			_	
Großer Binnensee, tiefs- te St. Großer Binnensee, tiefs- te St. 16.9.13 Großer Binnensee, tiefs- te St. 16.9.13 Großer Binnensee, tiefs-	129002	Garrensee, tiefste Stelle	25.9.13	6226		
129172 te St. 16.9.13 6388 ta GRUNOW						
Großer Binnensee, tiefs- 129172 te St. Großer Binnensee,	129172		16.9.13	6388	_	GRUNOW
129172 te St. 16.9.13 16791 catus SCHEFFLER Großer Binnensee, tiefs- te St. 16.9.13 6983 Amphora pediculus (KUETZING) GRUNOW Großer Binnensee, tiefs- te St. 16.9.13 6025 Nitzschia fonticola (GRUNOW) GRUNOW Großer Binnensee, tiefs- te St. 16.9.13 6785 ta (EHRENBERG) SIMONSEN Fragilaria construens Großer Binnensee, tiefs- te St. 16.9.13 6828 f. venter (EHRENBERG) HUSTEDT Großer Binnensee, tiefs- te St. 16.9.13 6180 Achnanthes clevei GRUNOW Großer Binnensee, tiefs- te St. 16.9.13 6180 Achnanthes clevei GRUNOW EHRENBERG sensu KRAMMER & LANGE- BERTALOT Großer Binnensee, tiefs- te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- te St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Großer Binnensee, tiefs- te St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING		Großer Binnensee, tiefs-			Cyclostephanos deli-	(GENKAL) CASPER &
Großer Binnensee, tiefste te St. Großer Binnensee, tiefste St	129172		16.9.13	16791		
129172 te St. 16.9.13 6983 Amphora pediculus (KUETZING) GRUNOW 129172 te St. 16.9.13 6025 Nitzschia fonticola (GRUNOW) GRUNOW 129172 te St. 16.9.13 6785 ta (EHRENBERG) SIMONSEN 129172 te St. 16.9.13 6828 f. venter 129172 te St. 16.9.13 6226 nutulus MOELLER 129172 te St. 16.9.13 6180 Achnanthes clevei GRUNOW 129172 te St. 16.9.13 6860 Amphora libyca BERTALOT 129172 te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG 129172 te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG 129172 te St. 16.9.13 6002 nuina EHRENBERG 129172 te St. 16.9.13 6002 nuina (KUETZING) W.SMITH 129172 te St. 16.9.13 6002 nuina (KUETZING) GRUNOW) 129172 te St. 16.9.13 6002 nuina (KUETZING) W.SMITH 129172 te St. 16.9.13 6002 nuina (KUETZING) W.SMITH 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING						
Großer Binnensee, tiefs- te St. 16.9.13 Großer Binnensee, tiefs- te St. 16.9.13 Großer Binnensee, tiefs- te St. Großer Binnensee, tiefs- te St. Großer Binnensee, tiefs- te St. 16.9.13 Großer Binnensee, tiefs- te St. Großer Binnensee, tiefs- te St. 16.9.13 Großer Binnensee, tiefs- te St. 16.9.13 Großer Bi	129172		16.9.13	6983	Amphora pediculus	(KUETZING) GRUNOW
129172 te St. 16.9.13 6025 Nitzschia fonticola (GRUNOW) GRUNOW Großer Binnensee, tiefs- te St. 16.9.13 6785 ta (EHRENBERG) SIMONSEN Fragilaria construens (KUETZING) CLEVE & MOELLER MOELLER GROßer Binnensee, tiefs- 16.9.13 6226 nutulus MOELLER GRUNOW EHRENBERG Sensu KRAMMER & LANGE- BERTALOT GROßer Binnensee, tiefs- 129172 te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- 129172 te St. 16.9.13 6002 niana (KUETZING) W.SMITH Großer Binnensee, tiefs- 129172 te St. 16.9.13 6002 niana (GRUNOW) EHRENBERG Sensu KRAMMER & LANGE- BERTALOT Cyclotella meneghi- niana (KUETZING) W.SMITH Cyclotella meneghi- niana (GRUNOW) LEMMERMANN GROßer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Cyclotella radiosa LEMMERMANN GROßer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING GROßer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING GROßer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING GROßer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING GROßer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING GROßer Binnensee, tiefs- 129172 te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING						
Großer Binnensee, tiefste St.	129172		16.9.13	6025	Nitzschia fonticola	(GRUNOW) GRUNOW
129172 te St. 16.9.13 6785 ta (EHRENBERG) SIMONSEN Großer Binnensee, tiefs- te St. 16.9.13 6828 f. venter (EHRENBERG) HUSTEDT Großer Binnensee, tiefs- te St. 16.9.13 6226 nutulus MOELLER Großer Binnensee, tiefs- te St. 16.9.13 6180 Achnanthes clevei GRUNOW Großer Binnensee, tiefs- te St. 16.9.13 6860 Amphora libyca BERTALOT Großer Binnensee, tiefs- te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- te St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Großer Binnensee, tiefs- te St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Cyclotella radiosa LEMMERMANN Großer Binnensee, tiefs- te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING						,
Großer Binnensee, tiefste St. 16.9.13 Großer Binnensee, tiefste St. Großer Binnensee, tief	129172		16.9.13	6785	_	(EHRENBERG) SIMONSEN
129172 te St. 16.9.13 6828 f. venter (EHRENBERG) HUSTEDT Großer Binnensee, tiefste St. 16.9.13 6226 nutulus MOELLER Großer Binnensee, tiefste St. 16.9.13 6180 Achnanthes clevei GRUNOW Großer Binnensee, tiefste St. 16.9.13 6860 Amphora libyca BERTALOT Großer Binnensee, tiefste St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefste St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Großer Binnensee, tiefste St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefste St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefste St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefste St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefste St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefste St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefste St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefste St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefste St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefste St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefste St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING					Fragilaria construens	,
Großer Binnensee, tiefs- 129172 te St. Großer Binnensee, tiefs- te St. 16.9.13 6226 nutulus Großer Binnensee, tiefs- te St. 16.9.13 6180 Achnanthes clevei GRUNOW EHRENBERG sensu KRAMMER & LANGE- BERTALOT Großer Binnensee, tiefs- te St. Großer Binnensee, ti	129172	•	16.9.13	6828	_	(EHRENBERG) HUSTEDT
129172 te St. 16.9.13 6226 nutulus MOELLER Großer Binnensee, tiefs- te St. 16.9.13 6180 Achnanthes clevei GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6860 Amphora libyca BERTALOT Großer Binnensee, tiefs- te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- te St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Großer Binnensee, tiefs- te St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6204 Cyclotella radiosa (GRUNOW) Großer Binnensee, tiefs- te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6004 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6887 Epithemia sorex KUETZING		Großer Binnensee, tiefs-			Stephanodiscus mi-	
Großer Binnensee, tiefs- te St. 16.9.13 6180 Achnanthes clevei GRUNOW EHRENBERG sensu KRAMMER & LANGE- BERTALOT Großer Binnensee, tiefs- 129172 te St. 16.9.13 6860 Amphora libyca BERTALOT Großer Binnensee, tiefs- 129172 te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- 129172 te St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Cyclotella meneghi- niana KUETZING (GRUNOW) LEMMERMANN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6002 niana KUETZING (GRUNOW) LEMMERMANN Stephanodiscus Amphora ovalis GRUNOW KUETZING (GRUNOW) LEMMERMANN GROßer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis KUETZING) KUETZING (KUETZING) KUETZING (KUETZING) KUETZING	129172		16.9.13	6226		*
129172 te St. 16.9.13 6180 Achnanthes clevei GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6860 Amphora libyca BERTALOT Großer Binnensee, tiefs- 129172 te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- 129172 te St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Großer Binnensee, tiefs- 129172 te St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6204 Cyclotella radiosa LEMMERMANN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6087 Epithemia sorex KUETZING		Großer Binnensee, tiefs-				
Großer Binnensee, tiefs- 129172 te St. Großer	129172	•	16.9.13	6180	Achnanthes clevei	GRUNOW
129172 te St. 16.9.13 6860 Amphora libyca BERTALOT Großer Binnensee, tiefs- te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- 129172 te St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Großer Binnensee, tiefs- te St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6204 Cyclotella radiosa LEMMERMANN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING						EHRENBERG sensu
129172 te St. 16.9.13 6860 Amphora libyca BERTALOT Großer Binnensee, tiefs- te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- 129172 te St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Großer Binnensee, tiefs- te St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6204 Cyclotella radiosa LEMMERMANN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING		Großer Binnensee, tiefs-				KRAMMER & LANGE-
129172 te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- 129172 te St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Großer Binnensee, tiefs- 129172 te St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6204 Cyclotella radiosa LEMMERMANN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Epithemia sorex KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING	129172		16.9.13	6860	Amphora libyca	BERTALOT
129172 te St. 16.9.13 6078 Fragilaria pinnata EHRENBERG Großer Binnensee, tiefs- 129172 te St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Großer Binnensee, tiefs- 129172 te St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6204 Cyclotella radiosa LEMMERMANN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Epithemia sorex KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING						
129172 te St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Großer Binnensee, tiefs- 129172 te St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6204 Cyclotella radiosa LEMMERMANN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING	129172		16.9.13	6078	Fragilaria pinnata	EHRENBERG
129172 te St. 16.9.13 6011 Nitzschia palea (KUETZING) W.SMITH Großer Binnensee, tiefs- 129172 te St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6204 Cyclotella radiosa LEMMERMANN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING		Großer Binnensee, tiefs-				
Großer Binnensee, tiefste St.	129172		16.9.13	6011	Nitzschia palea	(KUETZING) W.SMITH
129172 te St. 16.9.13 6002 niana KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6204 Cyclotella radiosa LEMMERMANN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING		Großer Binnensee, tiefs-			-	
129172 te St. 16.9.13 6204 Cyclotella radiosa LEMMERMANN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING Großer Binnensee, tiefs-	129172	·	16.9.13	6002	niana	KUETZING
129172 te St. 16.9.13 6204 Cyclotella radiosa LEMMERMANN Großer Binnensee, tiefs- 129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING Großer Binnensee, tiefs-		Großer Binnensee, tiefs-				(GRUNOW)
129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING Großer Binnensee, tiefs-	129172		16.9.13	6204	Cyclotella radiosa	*
129172 te St. 16.9.13 6009 hantzschii GRUNOW Großer Binnensee, tiefs- 129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING Großer Binnensee, tiefs-		Großer Binnensee, tiefs-			•	
Großer Binnensee, tiefste St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefste St. 16.9.13 6887 Epithemia sorex KUETZING Großer Binnensee, tiefste St. 16.9.13 6887 Epithemia sorex KUETZING	129172	te St.	16.9.13	6009	hantzschii	GRUNOW
129172 te St. 16.9.13 6044 Amphora ovalis (KUETZING) KUETZING Großer Binnensee, tiefs- te St. 16.9.13 6887 Epithemia sorex KUETZING Großer Binnensee, tiefs-		Großer Binnensee, tiefs-				
Großer Binnensee, tiefste 129172 te St. 16.9.13 6887 Epithemia sorex KUETZING Großer Binnensee, tiefste 16.9.13 6887 Epithemia sorex KUETZING	129172		16.9.13	6044	Amphora ovalis	(KUETZING) KUETZING
129172 te St. 16.9.13 6887 Epithemia sorex KUETZING Großer Binnensee, tiefs-						
Großer Binnensee, tiefs-	129172		16.9.13	6887	Epithemia sorex	KUETZING
1231/2 te 3t. 10.3.15 0100 ACHININITIES DURY DE SAINT-VINCENT	129172	te St.	16.9.13	6160	Achnanthes	BORY DE SAINT-VINCENT

MS NR	M NAME1	DATUM	DV NR	TAXON_DV	AUTOR DV
	Großer Binnensee, tiefs-	2000			
129172	te St.	16.9.13	6798	Aulacoseira ambigua	(GRUNOW) SIMONSEN
	Großer Binnensee, tiefs-			Cyclostephanos du-	(
129172	te St.	16.9.13	6943	bius	(HUSTEDT) ROUND
	Großer Binnensee, tiefs-				,
129172	te St.	16.9.13	6237	Fragilaria parasitica	(W.SMITH) GRUNOW
	Großer Binnensee, tiefs-			Gomphonema mi-	,
129172	te St.	16.9.13	16559	nusculum	KRASSKE
	Großer Binnensee, tiefs-			Cocconeis ne-	
129172	te St.	16.9.13	6306	othumensis	KRAMMER
	Großer Binnensee, tiefs-				
129172	te St.	16.9.13	6034	Fragilaria construens	(EHRENBERG) GRUNOW
	Großer Binnensee, tiefs-				
129172	te St.	16.9.13	6868	Navicula capitata	EHRENBERG
	Großer Binnensee, tiefs-			Navicula capitatora-	
129172	te St.	16.9.13	6910	diata	H.GERMAIN
	Großer Binnensee, tiefs-				
129172	te St.	16.9.13	6873	Navicula slesvicensis	GRUNOW
	Großer Binnensee, tiefs-				
129172	te St.	16.9.13	6972	Nitzschia	HASSALL
	Großer Binnensee, tiefs-			Cymbella microce-	
129172	te St.	16.9.13	6895	phala	GRUNOW
	Großer Binnensee, tiefs-				
129172	te St.	16.9.13	6004	Cymbella ventricosa	KUETZING
	Großer Binnensee, tiefs-			Fragilaria capucina	sensu KRAMMER &
129172	te St.	16.9.13	16571	distans - Sippen	LANGE-BERTALOT
	Großer Binnensee, tiefs-			Navicula hofman-	
129172	te St.	16.9.13	6499	niae	LANGE-BERTALOT
	Großer Binnensee, tiefs-			Achnanthes delica-	
129172	te St.	16.9.13	6248		(KUETZING) GRUNOW
				Achnanthes lanceo-	
	Großer Binnensee, tiefs-			lata ssp. frequentis-	
129172	te St.	16.9.13	6260	sima	LANGE-BERTALOT
	Großer Binnensee, tiefs-			Achnanthes minutis-	
129172	te St.	16.9.13	6014	sima	KUETZING
	Großer Binnensee, tiefs-				
129172	te St.	16.9.13	6050	Asterionella formosa	HASSALL
100170	Großer Binnensee, tiefs-	45040	6050		(51155ND550) 015N5
129172	te St.	16.9.13	6052	Caloneis silicula	(EHRENBERG) CLEVE
420472	Großer Binnensee, tiefs-	45042	6024	Cocconeis placentu-	FURFNIREDG
129172	te St.	16.9.13	6021	la	EHRENBERG
					(M.H.HOHN &
					HELLERMANN)
					THERIOT,
420472	Großer Binnensee, tiefs-	46642	6477	Cyclostephanos invi-	STOERMER &
129172	te St.	16.9.13	6177	sitatus	HAKANSSON
120172	Großer Binnensee, tiefs-	16.0.43	6001	Compate	(DDEDICCON) M. COMET
129172	te St.	16.9.13	6031	Cymatopleura solea	(BREBISSON) W.SMITH
120172	Großer Binnensee, tiefs-	16.0.43	6056	Comple all and the	/FUDENDEDC/ KIDOUNES
129172	te St.	16.9.13	6059	Cymbella cistula	(EHRENBERG) KIRCHNER
120172	Großer Binnensee, tiefs-	16.0.13	1,000	Comple all a office to 2	
129172	te St.	16.9.13	16998	Cymbella affinis 2	
120172	Großer Binnensee, tiefs-	16 0 13	6000	Cumballa silasis sa	DI EICCH
129172	te St.	16.9.13	6898	Cymbella silesiaca	BLEISCH

MC ND	NA NIANATA	DATUM	DV ND	TAYON DV	AUTOR DV
MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
120172	Großer Binnensee, tiefs-	16012	6005	Nantaula minina	CRUNION
129172	te St.	16.9.13	6095	Navicula minima	GRUNOW
120172	Großer Binnensee, tiefs-	16 0 13	C212	Fusikla austra anduraka	(VUETZINIC) PREDICCON
129172	te St.	16.9.13	6212	Epithemia adnata	(KUETZING) BREBISSON
120172	Großer Binnensee, tiefste St.	16 0 12	6022	Fragilaria canucina	DECMAZIEDEC
129172		16.9.13	6033	Fragilaria capucina Fragilaria parasitica	DESMAZIERES
120172	Großer Binnensee, tiefste St.	16 0 12	6776	var. subconstricta	CRUNOW
129172	Großer Binnensee, tiefs-	16.9.13	0//0	var. subconstricta	GRUNOW
129172	te St.	16.9.13	6990	Navicula	BORY DE SAINT-VINCENT
129172	Großer Binnensee, tiefs-	10.5.15	0990	Ivavicuia	LANGE-BERTALOT &
129172	te St.	16.9.13	16653	Navicula antonii	RUMRICH
123172	Großer Binnensee, tiefs-	10.9.13	10055	ivavicula alitoriii	KOWIKICI
129172	te St.	16.9.13	6015	Navicula gregaria	DONKIN
123172	Großer Binnensee, tiefs-	10.5.15	0013	Navicula gregaria	DOWNIN
129172	te St.	16.9.13	6104	Navicula reinhardtii	(GRUNOW) GRUNOW
123172		10.5.15	0104	Travicaia Tellillaratii	(O.F.MUELLER) BORY DE
120172	Großer Binnensee, tiefs-	16 0 12	6021	Navicula tripunctata	'
129172	te St.	16.9.13	6831	Navicula tripunctata	SAINT-VINCENT
129172	Großer Binnensee, tiefste St.	16.9.13	6870	Navicula trivialis	LANGE-BERTALOT
129172	Großer Binnensee, tiefs-	10.5.15	0870	ivavicula trivialis	LANGE-BERTALOT
129172	te St.	16.9.13	6448	Navicula absoluta	HUSTEDT
129172	Großer Binnensee, tiefs-	10.5.15	0446	ivavicula absoluta	ПОЗТЕЙТ
129172	te St.	16.9.13	16044	Nitzschia adamata	HUSTEDT
123172	Großer Binnensee, tiefs-	10.5.15	10044	TVITZ3CIIIa adaiiiata	HOSTEDT
129172	te St.	16.9.13	6027	Nitzschia sigmoidea	(NITZSCH) W.SMITH
123172	Großer Binnensee, tiefs-	10.3.13	0027	Triceseria signiciaca	(M125CH) W.SWITH
129172	te St.	16.9.13	6151	Pinnularia	EHRENBERG
	Großer Binnensee, tiefs-		0202	Rhoicosphenia ab-	(C.AGARDH) LANGE-
129172	te St.	16.9.13	6224	breviata	BERTALOT
	Großer Binnensee, tiefs-			Stephanodiscus al-	
129172	te St.	16.9.13	6795	pinus	HUSTEDT
	Gr. Plöner See, Süd,			Stephanodiscus mi-	(KUETZING) CLEVE &
129102	tiefste St.	4.9.13	6226	nutulus	MOELLER
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6907	Aulacoseira islandica	(O.MUELLER) SIMONSEN
	Gr. Plöner See, Süd,			Stephanodiscus al-	
129102	tiefste St.	4.9.13	6795	pinus	HUSTEDT
	Gr. Plöner See, Süd,			Stephanodiscus ne-	
129102	tiefste St.	4.9.13	6796	oastraea	HAKANSSON & B.HICKEL
	Gr. Plöner See, Süd,			Fragilaria crotonen-	
129102	tiefste St.	4.9.13	6075	sis	KITTON
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6050	Asterionella formosa	HASSALL
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6983	Amphora pediculus	(KUETZING) GRUNOW
	Gr. Plöner See, Süd,				(GRUNOW)
129102	tiefste St.	4.9.13	6204	Cyclotella radiosa	LEMMERMANN
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6025	Nitzschia fonticola	(GRUNOW) GRUNOW
	Gr. Plöner See, Süd,			Cocconeis ne-	
129102	tiefste St.	4.9.13	6306	othumensis	KRAMMER
	Gr. Plöner See, Süd,			Fragilaria brevistria-	
129102	tiefste St.	4.9.13	6388	ta	GRUNOW

MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
	Gr. Plöner See, Süd,			Gomphonema pumi-	(GRUNOW) E.REICHARDT
129102	tiefste St.	4.9.13	6437	lum	& LANGE-BERTALOT
	Gr. Plöner See, Süd,			Navicula crypto-	
129102	tiefste St.	4.9.13	6889	tenella	LANGE-BERTALOT
	Gr. Plöner See, Süd,			Cocconeis placentu-	
129102	tiefste St.	4.9.13	6021	la	EHRENBERG
					EHRENBERG sensu
	Gr. Plöner See, Süd,				KRAMMER & LANGE-
129102	tiefste St.	4.9.13	6860	Amphora libyca	BERTALOT
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6220		ROUND
	Gr. Plöner See, Süd,			Fragilaria capucina	
129102	tiefste St.	4.9.13	6392	var. gracilis	(OESTRUP) HUSTEDT
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6556	Navicula utermoehlii	HUSTEDT
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6008	Nitzschia dissipata	(KUETZING) RABENHORST
	Gr. Plöner See, Süd,			Rhoicosphenia ab-	(C.AGARDH) LANGE-
129102	tiefste St.	4.9.13	6224	breviata	BERTALOT
	Gr. Plöner See, Süd,			Achnanthes minutis-	
129102	tiefste St.	4.9.13	6014	sima	KUETZING
	Gr. Plöner See, Süd,			Aulacoseira granula-	
129102	tiefste St.	4.9.13	6785	ta	(EHRENBERG) SIMONSEN
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6020	Cocconeis pediculus	EHRENBERG
	Gr. Plöner See, Süd,			Cyclostephanos deli-	(GENKAL) CASPER &
129102	tiefste St.	4.9.13	16791	catus	SCHEFFLER
	Gr. Plöner See, Süd,			Cyclostephanos du-	
129102	tiefste St.	4.9.13	6943	bius	(HUSTEDT) ROUND
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	16665	Cymbella compacta	OESTRUP
	Gr. Plöner See, Süd,			Cymbella microce-	
129102	tiefste St.	4.9.13	6895	phala	GRUNOW
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6210	Diatoma tenuis	C.AGARDH
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6898	Cymbella silesiaca	BLEISCH
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6887	Epithemia sorex	KUETZING
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6034	Fragilaria construens	(EHRENBERG) GRUNOW
	Gr. Plöner See, Süd,			Fragilaria construens	
129102	tiefste St.	4.9.13	6828	f. venter	(EHRENBERG) HUSTEDT
	Gr. Plöner See, Süd,			Gomphonema	(HORNEMANN)
129102	tiefste St.	4.9.13	6867	olivaceum	BREBISSON
	Gr. Plöner See, Süd,			Gomphonema subti-	
129102	tiefste St.	4.9.13	6440	le	EHRENBERG
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6868	Navicula capitata	EHRENBERG
	Gr. Plöner See, Süd,				
129102	tiefste St.	4.9.13	6015	Navicula gregaria	DONKIN
	Gr. Plöner See, Süd,				(O.F.MUELLER) BORY DE
129102	tiefste St.	4.9.13	6831	Navicula tripunctata	SAINT-VINCENT
	Gr. Plöner See, Süd,		5551	The street of th	2
129102	tiefste St.	4.9.13	6039	Nitzschia amphibia	GRUNOW
			5555		

MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
129102	Gr. Plöner See, Süd, tiefste St.	4.9.13	6101	Navicula pupula	KUETZING
	Gr. Segeberger See, tiefste St.			Stephanodiscus mi-	(KUETZING) CLEVE &
129008	Gr. Segeberger See,	3.9.13	6226	nutulus Stephanodiscus ne-	MOELLER
129008	tiefste St. Gr. Segeberger See,	3.9.13	6796	oastraea	HAKANSSON & B.HICKEL
129008	tiefste St.	3.9.13	6050	Asterionella formosa	HASSALL
129008	Gr. Segeberger See, tiefste St.	3.9.13	6795	Stephanodiscus alpinus	HUSTEDT
	Gr. Segeberger See,				
129008	tiefste St. Gr. Segeberger See,	3.9.13	6983	Amphora pediculus Fragilaria brevistria-	(KUETZING) GRUNOW
129008	tiefste St.	3.9.13	6388	ta	GRUNOW
129008	Gr. Segeberger See, tiefste St.	3.9.13	6943	Cyclostephanos du- bius	(HUSTEDT) ROUND
129008	Gr. Segeberger See, tiefste St.	3.9.13	6180	Achnanthes clevei	GRUNOW
	Gr. Segeberger See,			Cocconeis ne-	
129008	tiefste St. Gr. Segeberger See,	3.9.13	6306	othumensis Fragilaria construens	KRAMMER
129008	tiefste St.	3.9.13	6828	f. venter	(EHRENBERG) HUSTEDT
129008	Gr. Segeberger See, tiefste St.	3.9.13	6078	Fragilaria pinnata	EHRENBERG
129008	Gr. Segeberger See, tiefste St.	3.9.13	6021	Cocconeis placentu-	EHRENBERG
129006	Gr. Segeberger See,	3.9.13	0021	Fragilaria capucina	EFINENDENG
129008	tiefste St. Gr. Segeberger See,	3.9.13	6392	var. gracilis	(OESTRUP) HUSTEDT
129008	tiefste St.	3.9.13	6556	Navicula utermoehlii	HUSTEDT
129008	Gr. Segeberger See, tiefste St.	3.9.13	6044	Amphora ovalis	(KUETZING) KUETZING
400000	Gr. Segeberger See,			Cyclostephanos deli-	(GENKAL) CASPER &
129008	Gr. Segeberger See,	3.9.13	16791	catus	SCHEFFLER
129008	tiefste St.	3.9.13	6210	Diatoma tenuis	C.AGARDH
129008	Gr. Segeberger See, tiefste St.	3.9.13	16578	Navicula trophicatrix	LANGE-BERTALOT
129008	Gr. Segeberger See, tiefste St.	3.9.13	6025	Nitzschia fonticola	(GRUNOW) GRUNOW
		3.3.2			EHRENBERG sensu
129008	Gr. Segeberger See, tiefste St.	3.9.13	6860	Amphora libyca	KRAMMER & LANGE- BERTALOT
120009	Gr. Segeberger See, tiefste St.	2 0 12	6022	Fragilaria capucina	DECMAZIEDEC
129008	Gr. Segeberger See,	3.9.13	6033	Geissleria cum-	DESMAZIERES (L.KALBE) LANGE-
129008	tiefste St. Gr. Segeberger See,	3.9.13	16654	merowi Gomphonema pumi-	BERATALOT (GRUNOW) E.REICHARDT
129008	tiefste St.	3.9.13	6437	lum	& LANGE-BERTALOT
129008	Gr. Segeberger See, tiefste St.	3.9.13	6248	Achnanthes delica- tula	(KUETZING) GRUNOW
	Gr. Segeberger See,			Achnanthes jour-	
129008	tiefste St. Gr. Segeberger See,	3.9.13	6255	Rhoicosphenia ab-	HERIBAUD (C.AGARDH) LANGE-
129008	tiefste St.	3.9.13	6224	breviata	BERTALOT

MS_NR	M NAME1	DATUM	DV_NR	TAXON DV	AUTOR_DV
_	Gr. Segeberger See,			Aulacoseira granula-	_
129008	tiefste St.	3.9.13	6785	ta	(EHRENBERG) SIMONSEN
	Gr. Segeberger See,			Cyclotella cyc-	HAKANSSON &
129008	tiefste St.	3.9.13	16185	lopuncta	J.R.CARTER
	Gr. Segeberger See,				/
129008	tiefste St.	3.9.13	6353	, ,	(EHRENBERG) KUETZING
120000	Gr. Segeberger See,	2.0.12	16575	Fragilaria ulna acus -	sensu KRAMMER &
129008	tiefste St.	3.9.13	16575	Sippen Fragilaria capucina	LANGE-BERTALOT
129008	Gr. Segeberger See, tiefste St.	3.9.13	16571	distans - Sippen	sensu KRAMMER & LANGE-BERTALOT
123000	Gr. Segeberger See,	3.3.13	10371	distaris - Sipperi	LANGE-BERTALOT
129008	tiefste St.	3.9.13	6033	Fragilaria capucina	DESMAZIERES
	Gr. Segeberger See,			Fragilaria crotonen-	
129008	tiefste St.	3.9.13	6075	sis	KITTON
	Gr. Segeberger See,			Gomphonema	(HORNEMANN)
129008	tiefste St.	3.9.13	6867	olivaceum	BREBISSON
	Gr. Segeberger See,			Gomphonema par-	
129008	tiefste St.	3.9.13	16572	vulum - Sippen	
	Gr. Segeberger See,				
129008	tiefste St.	3.9.13	6703	Achnanthes kolbei	HUSTEDT
120000	Gr. Segeberger See,	2042	6000		FURENDERG
129008	tiefste St.	3.9.13	6088	Navicula cari	EHRENBERG
129008	Gr. Segeberger See, tiefste St.	3.9.13	6089	Navicula cincta	(EMDENIDEDC) DALEC
129008	Gr. Segeberger See,	3.9.13	0009	Navicula ciricta	(EHRENBERG) RALFS
129008	tiefste St.	3.9.13	6221	ana	LANGE-BERTALOT
123000	ticiste st.	3.3.13	0221	Achnanthes lanceo-	EATT COT
	Gr. Segeberger See,			lata ssp. frequentis-	
129008	tiefste St.	3.9.13	6260	sima	LANGE-BERTALOT
	Gr. Segeberger See,			Achnanthes lanceo-	(OESTRUP) LANGE-
129008	tiefste St.	3.9.13	6261	lata ssp. rostrata	BERTALOT
				Achnanthes minutis-	
129052	Ihlsee, tiefste Stelle	18.9.13	6014	sima	KUETZING
129052	Ihlsee, tiefste Stelle	18.9.13	6405	Fragilaria nanana	LANGE-BERTALOT
				Cyclotella pseu-	
129052	Ihlsee, tiefste Stelle	18.9.13	6945	dostelligera	HUSTEDT
					(W.SMITH) LANGE-
129052	Ihlsee, tiefste Stelle	18.9.13	6409	Fragilaria tenera	BERTALOT
129052	Ihlsee, tiefste Stelle	18.9.13	6050	Asterionella formosa	HASSALL
				Fragilaria construens	
129052	Ihlsee, tiefste Stelle	18.9.13	6828		(EHRENBERG) HUSTEDT
420052		40042	6705	Stephanodiscus al-	LUICTEDT
129052	Ihlsee, tiefste Stelle	18.9.13	6795	pinus	HUSTEDT
129052	Ihlsee, tiefste Stelle	18.9.13	6895	Cymbella microce- phala	GRUNOW
129052	Ihlsee, tiefste Stelle	18.9.13	6160	Achnanthes	BORY DE SAINT-VINCENT
129052	Ihlsee, tiefste Stelle	18.9.13	6401	Fragilaria exigua	GRUNOW
129052	Ihlsee, tiefste Stelle	18.9.13	6272	Achnanthes pusilla	(GRUNOW) DE TONI
129052	Ihlsee, tiefste Stelle	18.9.13	6295	Brachysira neoexilis	LANGE-BERTALOT
129052	Ihlsee, tiefste Stelle	18.9.13	6990	Navicula	BORY DE SAINT-VINCENT
129052	Ihlsee, tiefste Stelle	18.9.13	6972	Nitzschia	HASSALL
123032	וווושכב, נופושנפ שנפופ	10.3.13	03/2	Navicula cryptoce-	HAJJALL
129052	Ihlsee, tiefste Stelle	18.9.13	6010	phala	KUETZING
123032	וווושכב, נוכושנב שנפוופ	10.3.13	1 0010	Pilala	ROLIZINO

MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
_	_			Cocconeis placentu-	
129052	Ihlsee, tiefste Stelle	18.9.13	6021	la	EHRENBERG
129052	Ihlsee, tiefste Stelle	18.9.13	6095	Navicula minima	GRUNOW
129052	Ihlsee, tiefste Stelle	18.9.13	6392	Fragilaria capucina var. gracilis	(OESTRUP) HUSTEDT
129052	Ihlsee, tiefste Stelle	18.9.13	6547	Navicula subalpina	E.REICHARDT
129052	Ihlsee, tiefste Stelle	18.9.13	6078	Fragilaria pinnata	EHRENBERG
129052	Ihlsee, tiefste Stelle	18.9.13	6103	Navicula radiosa	KUETZING
129052	Ihlsee, tiefste Stelle	18.9.13	6556	Navicula utermoehlii	HUSTEDT
129052	Ihlsee, tiefste Stelle	18.9.13	6101	Navicula pupula	KUETZING
129052	Ihlsee, tiefste Stelle	18.9.13	6529	Navicula pseudos- cutiformis	HUSTEDT
129052	Ihlsee, tiefste Stelle	18.9.13	6146	Cyclotella	(KUETZING) BREBISSON
129052	Ihlsee, tiefste Stelle	18.9.13	6869	Diploneis	EHRENBERG ex CLEVE
129052	Ihlsee, tiefste Stelle	18.9.13	6794	Gomphonema	EHRENBERG
129052	Ihlsee, tiefste Stelle	18.9.13	6448	Navicula absoluta	HUSTEDT
129052	Ihlsee, tiefste Stelle	18.9.13	6008	Nitzschia dissipata	(KUETZING) RABENHORST
129052	Ihlsee, tiefste Stelle	18.9.13	6129	Stauroneis anceps	EHRENBERG
				Stauroneis anceps	
129052	Ihlsee, tiefste Stelle	18.9.13	6680	var. gracilis	(EHRENBERG) BRUN
120052	Iblaca diafata Challa	10 0 12	C200	Amphora veneta	HAMODTH
129052	Ihlsee, tiefste Stelle	18.9.13	6289	var. capitata	(GRUNOW)
129052	Ihlsee, tiefste Stelle	18.9.13	6204	Cyclotella radiosa	LEMMERMANN
129052	Ihlsee, tiefste Stelle	18.9.13	16665	Cymbella compacta	OESTRUP
129052	Ihlsee, tiefste Stelle	18.9.13	6375	Eunotia rhomboidea	HUSTEDT
129052	Ihlsee, tiefste Stelle	18.9.13	6033	Fragilaria capucina	DESMAZIERES
				Gomphonema par-	
129052	Ihlsee, tiefste Stelle	18.9.13	16572	vulum - Sippen	
129052	Ihlsee, tiefste Stelle	18.9.13	6880	Navicula crypto- tenella	LANGE-BERTALOT
123032	misee, tierste stelle	10.5.15	0003	teriena	(GRUNOW)
129052	Ihlsee, tiefste Stelle	18.9.13	6605	Nitzschia perminuta	M.PERAGALLO
				Nitzschia valdestria-	
129052	Ihlsee, tiefste Stelle	18.9.13	16453	ta	ALEEM & HUSTEDT
129052	Ihlsee, tiefste Stelle	18.9.13	6796	Stephanodiscus ne- oastraea	HAKANSSON & B.HICKEL
129052	Ihlsee, tiefste Stelle	18.9.13	6952	Surirella	TURPIN
	Neversdorfer See, tiefs-	10.0.120	3331	Stephanodiscus mi-	(KUETZING) CLEVE &
129160	te St.	10.9.13	6226	nutulus	MOELLER
	Neversdorfer See, tiefs-				(GRUNOW)
129160	te St.	10.9.13	6204	Cyclotella radiosa	LEMMERMANN
129160	Neversdorfer See, tiefs- te St.	10.9.13	6798	Aulacoseira ambigua	(GRUNOW) SIMONSEN
	Neversdorfer See, tiefs-			5	,
129160	te St.	10.9.13	6050	Asterionella formosa	HASSALL
120160	Neversdorfer See, tiefs-	10.0.13	6705	Aulacoseira granula-	(EUDENIDEDO) CINAONICEN
129160	te St. Neversdorfer See, tiefs-	10.9.13	6785	ta Stephanodiscus ne-	(EHRENBERG) SIMONSEN
129160	te St.	10.9.13	6796	oastraea	HAKANSSON & B.HICKEL

MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
100160	Neversdorfer See, tiefs-	10010	5000		////5771116\ 6511116\
129160	te St.	10.9.13	6983	<u> </u>	(KUETZING) GRUNOW
120160	Neversdorfer See, tiefs-	10.0.12	6075	Fragilaria crotonen-	MITTON
129160	te St.	10.9.13	6075	sis	KITTON
120160	Neversdorfer See, tiefs-	10.0.12	6045	Cyclotella pseu-	LUICTEDT
129160	te St.	10.9.13	6945	dostelligera	HUSTEDT
120160	Neversdorfer See, tiefs-	10.0.12	6000	Stephanodiscus	CDUNOW
129160	te St.	10.9.13	6009	hantzschii Achnanthes minutis-	GRUNOW
120160	Neversdorfer See, tiefs-	10.0.13	CO1.4		KUETZINIC
129160	te St.	10.9.13	6014		KUETZING
120160	Neversdorfer See, tiefs-	10.0.13	C200	Fragilaria brevistria-	CRUNOW
129160	te St.	10.9.13	6388	ta	GRUNOW
420460	Neversdorfer See, tiefs-	10012	60.40	Cyclostephanos du-	(UUISTEDT) DOUBLE
129160	te St.	10.9.13	6943	bius	(HUSTEDT) ROUND
	Neversdorfer See, tiefs-				
129160	te St.	10.9.13	6180		GRUNOW
	Neversdorfer See, tiefs-			Fragilaria construens	,
129160	te St.	10.9.13	6828		(EHRENBERG) HUSTEDT
	Neversdorfer See, tiefs-			Fragilaria ulna acus -	sensu KRAMMER &
129160	te St.	10.9.13	16575	Sippen	LANGE-BERTALOT
	Neversdorfer See, tiefs-				
129160	te St.	10.9.13	6556	Navicula utermoehlii	HUSTEDT
	Neversdorfer See, tiefs-			Cocconeis ne-	
129160	te St.	10.9.13	6306	othumensis	KRAMMER
	Neversdorfer See, tiefs-			Cocconeis placentu-	
129160	te St.	10.9.13	6021	la	EHRENBERG
	Neversdorfer See, tiefs-			Cyclostephanos deli-	(GENKAL) CASPER &
129160	te St.	10.9.13	16791	catus	SCHEFFLER
	Neversdorfer See, tiefs-			Cymbellonitzschia	
129160	te St.	10.9.13	16201	diluviana	HUSTEDT
	Neversdorfer See, tiefs-			Geissleria cum-	(L.KALBE) LANGE-
129160	te St.	10.9.13	16654	merowi	BERATALOT
	Neversdorfer See, tiefs-				
129160	te St.	10.9.13	6088	Navicula cari	EHRENBERG
	Neversdorfer See, tiefs-			Navicula reichardti-	
129160	te St.	10.9.13	6221	ana	LANGE-BERTALOT
	Neversdorfer See, tiefs-			Achnanthes jour-	
129160	te St.	10.9.13	6255	sacense	HERIBAUD
	Neversdorfer See, tiefs-			Achnanthes conspi-	
129160	te St.	10.9.13	6855	cua	A.MAYER
					EHRENBERG sensu
	Neversdorfer See, tiefs-				KRAMMER & LANGE-
129160	te St.	10.9.13	6860	Amphora libyca	BERTALOT
	Neversdorfer See, tiefs-			, , , , , , , , , , , , , , , , , , , ,	
129160	te St.	10.9.13	6020	Cocconeis pediculus	EHRENBERG
	Neversdorfer See, tiefs-		1323		
129160	te St.	10.9.13	6033	Fragilaria capucina	DESMAZIERES
	Neversdorfer See, tiefs-			Fragilaria construens	
129160	te St.	10.9.13	6397	f. binodis	(EHRENBERG) HUSTEDT
123100	Neversdorfer See, tiefs-	10.5.15	5557	Fragilaria capucina	(L.MENSENO) NOSTEDI
129160	te St.	10.9.13	6392	var. gracilis	(OESTRUP) HUSTEDT
123100	Neversdorfer See, tiefs-	10.5.15	0332	var. graciiis	(OLDINOI / HODIEDI
129160	te St.	10.9.13	6078	Fragilaria pinnata	EHRENBERG
123100	Neversdorfer See, tiefs-	10.3.13	0078	i ragnaria pililiata	LIMENDENO
120160	:	10 0 12	6704	Gomphonema	ENDENDEDG
129160	te St.	10.9.13	6794	оотприонента	EHRENBERG

MS NR	M NAME1	DATUM	DV NR	TAXON DV	AUTOR_DV
_	Neversdorfer See, tiefs-		_	Gomphonema	(HORNEMANN)
129160	te St.	10.9.13	6867	olivaceum	BREBISSON
100150	Neversdorfer See, tiefs-	40040	604.0	Navicula capitatora-	
129160	te St.	10.9.13	6910	diata	H.GERMAIN
129160	Neversdorfer See, tiefs- te St.	10.9.13	6015	Navicula gregaria	DONKIN
123100	Neversdorfer See, tiefs-	10.5.15	0013	Travicala gregaria	DOMAIN
129160	te St.	10.9.13	6039	Nitzschia amphibia	GRUNOW
	Neversdorfer See, tiefs-			Nitzschia subacicula-	
129160	te St.	10.9.13	6613	ris	HUSTEDT
				Achnanthes lanceo-	
120160	Neversdorfer See, tiefs-	10 0 12	6260	lata ssp. frequentis-	LANCE DEDTALOT
129160	te St. Neversdorfer See, tiefs-	10.9.13	6260	sima Achnanthes lauen-	LANGE-BERTALOT
129160	te St.	10.9.13	6263	burgiana	HUSTEDT
129063	Pinnsee, tiefste Stelle	24.9.13	6998	Eunotia	EHRENBERG
129063	Pinnsee, tiefste Stelle	24.9.13	6091	Tabellaria flocculosa	(ROTH) KUETZING
				Stephanodiscus mi-	(KUETZING) CLEVE &
129063	Pinnsee, tiefste Stelle	24.9.13	6226	nutulus	MOELLER
129063	Pinnsee, tiefste Stelle	24.9.13	6936	Cyclotella ocellata	PANTOCSEK
129063	Pinnsee, tiefste Stelle	24.9.13	6375	Eunotia rhomboidea	HUSTEDT
				Gomphonema par-	
129063	Pinnsee, tiefste Stelle	24.9.13	16572	vulum - Sippen	
129063	Pinnsee, tiefste Stelle	24.9.13	6513	Navicula mediocris	KRASSKE
129063	Pinnsee, tiefste Stelle	24.9.13	6050	Asterionella formosa	HASSALL
129063	Pinnsee, tiefste Stelle	24.9.13	6798	Aulacoseira ambigua	(GRUNOW) SIMONSEN
					(EHRENBERG)
129063	Pinnsee, tiefste Stelle	24.9.13	6213		SCHAARSCHMIDT
129063	Pinnsee, tiefste Stelle	24.9.13	6606	'	HUSTEDT
129063	Pinnsee, tiefste Stelle	24.9.13	6822	Neidium	PFITZER
129063	Pinnsee, tiefste Stelle	24 0 12	6/112	Frustulia rhomboi- des var. saxonica	(DADENIHODET) DE TONI
	·	24.9.13			(RABENHORST) DE TONI
129063	Pinnsee, tiefste Stelle	24.9.13	6998		EHRENBERG
129063	Pinnsee, tiefste Stelle	24.9.13	6367	Eunotia meisteri	HUSTEDT (W.SMITH) LANGE-
129063	Pinnsee, tiefste Stelle	24.9.13	6409	Fragilaria tenera	BERTALOT
	T minese, trends esterie	2	0.00	Stephanodiscus al-	
129063	Pinnsee, tiefste Stelle	24.9.13	6795	pinus	HUSTEDT
				Fragilaria ulna acus -	sensu KRAMMER &
129063	Pinnsee, tiefste Stelle	24.9.13	16575	Sippen	LANGE-BERTALOT
120062	Pinnsee, tiefste Stelle	24 0 12	6125	Pinnularia	(EMDENIDEDC) CLEVE
129063	r iiiiisee, tieiste stelle	24.9.13	6125	microstauron Achnanthes minutis-	(EHRENBERG) CLEVE
129063	Pinnsee, tiefste Stelle	24.9.13	6014	sima	KUETZING
129063	Pinnsee, tiefste Stelle	24.9.13	6214	Eunotia incisa	GREGORY
129063	Pinnsee, tiefste Stelle	24.9.13	16143	Achnanthes rossii	HUSTEDT
129063	Pinnsee, tiefste Stelle	24.9.13	16349	Navicula notha	WALLACE
129063	Pinnsee, tiefste Stelle	24.9.13	6011	Nitzschia palea	(KUETZING) W.SMITH
123003	i infisce, tierate stelle	27.7.13	0011	Tarezacina palea	(NOETZHAO) AN SHAITH

MS_NR	M NAME1	DATUM	DV NR	TAXON DV	AUTOR_DV
	_			Stephanodiscus ne-	_
129063	Pinnsee, tiefste Stelle	24.9.13	6796	oastraea	HAKANSSON & B.HICKEL
120062	Diamana diafata Challa	24042	6043	Cyclostephanos du-	(LULICTEDT) DOLIND
129063	Pinnsee, tiefste Stelle	24.9.13	6943	bius	(HUSTEDT) ROUND (GRUNOW)
129063	Pinnsee, tiefste Stelle	24.9.13	6204	Cyclotella radiosa	LEMMERMANN
					(BREBISSON)
129063	Pinnsee, tiefste Stelle	24.9.13	6975		RABENHORST
129063	Dinness tiefete Stelle	24.9.13	6828	Fragilaria construens f. venter	(EHRENBERG) HUSTEDT
129065	Pinnsee, tiefste Stelle	24.9.13	0020	Fragilaria crotonen-	(ERKENDERG) HUSTEDT
129063	Pinnsee, tiefste Stelle	24.9.13	6075	sis	KITTON
129063	Pinnsee, tiefste Stelle	24.9.13	6405	Fragilaria nanana	LANGE-BERTALOT
129063	Pinnsee, tiefste Stelle	24.9.13	16463	Pinnularia brauniana	(GRUNOW) MILLS
129063	Pinnsee, tiefste Stelle	24.9.13	6121	Pinnularia gibba	EHRENBERG
129063	Pinnsee, tiefste Stelle	24.9.13	6160	Achnanthes	BORY DE SAINT-VINCENT
				Achnanthes minutis-	
129063	Pinnsee, tiefste Stelle	24.9.13	6014	sima	KUETZING
129063	Pinnsee, tiefste Stelle	24.9.13	6797	Aulacoseira	THWAITES
129063	Pinnsee, tiefste Stelle	24.9.13	6785	Aulacoseira granula- ta	(EHRENBERG) SIMONSEN
129063	Pinnsee, tiefste Stelle	24.9.13	6371		MIGULA
129063		24.9.13	6990	Eunotia naegelii Navicula	BORY DE SAINT-VINCENT
	Pinnsee, tiefste Stelle				
129063	Pinnsee, tiefste Stelle	24.9.13	6151	Pinnularia	EHRENBERG (HUSTEDT) LANGE-
				Achnanthes sub-	BERTALOT &
129063	Pinnsee, tiefste Stelle	24.9.13	6276	atomoides	R.E.M.ARCHIBALD
420062	D: 1: (1 C) II	24042	5024	Cocconeis placentu-	FURENCE
129063	Pinnsee, tiefste Stelle	24.9.13	6021	la	EHRENBERG
129063	Pinnsee, tiefste Stelle	24.9.13	6210	Diatoma tenuis	C.AGARDH
129063	Pinnsee, tiefste Stelle	24.9.13	6095	Navicula minima	GRUNOW
129063	Pinnsee, tiefste Stelle	24.9.13		Eunotia paludosa	GRUNOW
129063	Pinnsee, tiefste Stelle	24.9.13	6034	Fragilaria construens Fragilaria capucina	(EHRENBERG) GRUNOW
129063	Pinnsee, tiefste Stelle	24.9.13	6392	var. gracilis	(OESTRUP) HUSTEDT
129063	Pinnsee, tiefste Stelle	24.9.13	6078	Fragilaria pinnata	EHRENBERG
		2		Gomphonema	(HORNEMANN)
129063	Pinnsee, tiefste Stelle	24.9.13	6867	olivaceum	BREBISSON
129063	Pinnsee, tiefste Stelle	24.9.13	6180	Achnanthes clevei	GRUNOW
422255	D	24245	0000	Nitzschia linearis	(NACA ALTIN CONTROL
129063	Pinnsee, tiefste Stelle	24.9.13	6600	var. tenuis Stephanodiscus	(W.SMITH) GRUNOW
129063	Pinnsee, tiefste Stelle	24.9.13	6009	hantzschii	GRUNOW
	,		3,23	Stephanodiscus mi-	(KUETZING) CLEVE &
129192	Ukleisee, tiefste Stelle	26.9.13	6226	nutulus	MOELLER
129192	Ukleisee, tiefste Stelle	26.9.13	6936	Cyclotella ocellata	PANTOCSEK
120102	Illulaiana tiafata Ctalla	26.0.42	C70F	Stephanodiscus al-	LUICTEDT
129192	Ukleisee, tiefste Stelle	26.9.13	6795	pinus	HUSTEDT
129192	Ukleisee, tiefste Stelle	26.9.13	6050	Asterionella formosa	HASSALL

MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
129192	Ukleisee, tiefste Stelle	26.9.13	6798	Aulacoseira ambigua	(GRUNOW) SIMONSEN
				Fragilaria crotonen-	
129192	Ukleisee, tiefste Stelle	26.9.13	6075	sis	KITTON
120102	Liklaisaa tiafata Stalla	26.0.12	6400	Fragilaria tanara	(W.SMITH) LANGE- BERTALOT
129192	Ukleisee, tiefste Stelle	26.9.13	6409	Fragilaria tenera	(GRUNOW)
129192	Ukleisee, tiefste Stelle	26.9.13	6204	Cyclotella radiosa	LEMMERMANN
129192	Ukleisee, tiefste Stelle	26.9.13	6405		LANGE-BERTALOT
	,			Stephanodiscus ne-	
129192	Ukleisee, tiefste Stelle	26.9.13	6796	oastraea	HAKANSSON & B.HICKEL
				Fragilaria ulna acus -	sensu KRAMMER &
129192	Ukleisee, tiefste Stelle	26.9.13	16575	Sippen	LANGE-BERTALOT
129192	Ukleisee, tiefste Stelle	26.9.13	6983	Amphora pediculus	(KUETZING) GRUNOW
120102	Illiaiana Ainfata Challa	20.0.12	6042	Cyclostephanos du- bius	(UUICTEDT) DOUND
129192	Ukleisee, tiefste Stelle	26.9.13	6943	Fragilaria capucina	(HUSTEDT) ROUND sensu KRAMMER &
129192	Ukleisee, tiefste Stelle	26.9.13	16571	distans - Sippen	LANGE-BERTALOT
				Achnanthes minutis-	
129192	Ukleisee, tiefste Stelle	26.9.13	6014	sima	KUETZING
129192	Ukleisee, tiefste Stelle	26.9.13	6210	Diatoma tenuis	C.AGARDH
				Cyclotella pseu-	
129192	Ukleisee, tiefste Stelle	26.9.13	6945	dostelligera	HUSTEDT
				Fragilaria brevistria-	
129192	Ukleisee, tiefste Stelle	26.9.13	6388	ta	GRUNOW
129192	Ukleisee, tiefste Stelle	26.9.13	6033	Fragilaria capucina	DESMAZIERES
129192	Ukleisee, tiefste Stelle	26.9.13	6828	Fragilaria construens f. venter	(EHRENBERG) HUSTEDT
123132	Okielsee, tielste stelle	20.3.13	0828	Fragilaria capucina	(GRUNOW) KRAMMER &
129192	Ukleisee, tiefste Stelle	26.9.13	6394	var. perminuta	LANGE-BERTALOT
				Gomphonema	(HORNEMANN)
129192	Ukleisee, tiefste Stelle	26.9.13	6867	olivaceum	BREBISSON
				Gomphonema pumi-	(GRUNOW) E.REICHARDT
129192	Ukleisee, tiefste Stelle	26.9.13	6437	lum Commission and a train	& LANGE-BERTALOT
129192	Ukleisee, tiefste Stelle	26.9.13	6188	Gomphonema trun- catum	EHRENBERG
129192	Ukleisee, tiefste Stelle	26.9.13	6180	Achnanthes clevei	GRUNOW
123132	Okielsee, tierste stelle	20.3.13	0100	Actinationes devel	METZELTIN, WITKOWSKI
129192	Ukleisee, tiefste Stelle	26.9.13	16584	Navicula moskalii	& LANGE-BERTALOT
129192	Ukleisee, tiefste Stelle	26.9.13	6025		(GRUNOW) GRUNOW
				Achnanthes lanceo-	
				lata ssp. frequentis-	
129192	Ukleisee, tiefste Stelle	26.9.13	6260	sima	LANGE-BERTALOT
400050	\"	0.040	6006	Stephanodiscus mi-	(KUETZING) CLEVE &
129050	Vierer See ,tiefste Stelle	9.9.13	6226	nutulus	MOELLER
129050	Vierer See ,tiefste Stelle	9.9.13	6795	Stephanodiscus alpinus	HUSTEDT
129050	Vierer See ,tiefste Stelle	9.9.13	6050	Asterionella formosa	HASSALL
123030	vicici see ,tierste stelle	5.5.15	3030	/ Sterioricila formosa	(GRUNOW)
129050	Vierer See ,tiefste Stelle	9.9.13	6204	Cyclotella radiosa	LEMMERMANN
129050	Vierer See ,tiefste Stelle	9.9.13	6025		(GRUNOW) GRUNOW
	,			Stephanodiscus ne-	, , , , , , , , , , , , , , , , , , , ,
129050	Vierer See ,tiefste Stelle	9.9.13	6796	oastraea	HAKANSSON & B.HICKEL

MS_NR	M_NAME1	DATUM	DV_NR	TAXON_DV	AUTOR_DV
				Fragilaria crotonen-	
129050	Vierer See ,tiefste Stelle	9.9.13	6075	sis	KITTON
				Cyclostephanos du-	(
129050	Vierer See ,tiefste Stelle	9.9.13	6943	bius	(HUSTEDT) ROUND
129050	Vierer See ,tiefste Stelle	9.9.13	6983	<u> </u>	(KUETZING) GRUNOW
				Cyclostephanos deli-	(GENKAL) CASPER &
129050	Vierer See ,tiefste Stelle	9.9.13	16791	catus	SCHEFFLER
420050	V. C C	0.042	6720	Cocconeis placentu-	CELTIER
129050	Vierer See ,tiefste Stelle	9.9.13	6729	la var. pseudolineata	GEITLER
129050	Vierer See ,tiefste Stelle	9.9.13	16575	Fragilaria ulna acus - Sippen	sensu KRAMMER & LANGE-BERTALOT
129050	vierer see ,tierste stelle	9.9.15	103/3	Aulacoseira granula-	LANGE-BERTALUT
129050	Vierer See ,tiefste Stelle	9.9.13	6785	ta	(EHRENBERG) SIMONSEN
129050	Vierer See ,tiefste Stelle	9.9.13	6078		EHRENBERG
129050	vierer see ,tierste stelle	9.9.13	6078	Achnanthes lanceo-	ERKENDERG
129050	Vierer See ,tiefste Stelle	9.9.13	16127	lata ssp. lanceolata	(BREBISSON) GRUNOW
123030	vicici oce ,ticiote otelic	3.3.13	10127	lata 35p. lanccolata	EHRENBERG sensu
					KRAMMER & LANGE-
129050	Vierer See ,tiefste Stelle	9.9.13	6860	Amphora libyca	BERTALOT
					(M.H.HOHN &
					HELLERMANN)
					THERIOT,
				Cyclostephanos invi-	STOERMER &
129050	Vierer See ,tiefste Stelle	9.9.13	6177	sitatus	HAKANSSON
				Cymbella amphice-	
129050	Vierer See ,tiefste Stelle	9.9.13	6739	phala var. hercynica	(SCHMIDT) CLEVE
420050	V. C C	0.042	6045	Cyclotella pseu-	LUICTEDT
129050	Vierer See ,tiefste Stelle	9.9.13	6945	dostelligera	HUSTEDT
129050	Vierer See ,tiefste Stelle	9.9.13	6388	Fragilaria brevistria- ta	GRUNOW
	•				
129050	Vierer See ,tiefste Stelle	9.9.13	6033	Fragilaria capucina	DESMAZIERES
120050	Vierer Coe tiefete Ctelle	0.0.13	16571	Fragilaria capucina	sensu KRAMMER &
129050	vierer see ,tierste stelle	9.9.13	105/1	• • •	LAINGE-DERTALUT
129050	Vierer See tiefste Stelle	9 9 13	6392		(OESTRUP) HUSTEDT
123030	vicici dee ,tierate diene	3.3.13	0332		-
129050	Vierer See .tiefste Stelle	9,9.13	16654		•
129050 129050 129050 129050	Vierer See ,tiefste Stelle Vierer See ,tiefste Stelle Vierer See ,tiefste Stelle Vierer See ,tiefste Stelle	9.9.13 9.9.13 9.9.13 9.9.13	16571 6392 16654 6972	distans - Sippen Fragilaria capucina var. gracilis Geissleria cum- merowi	LANGE-BERTALOT (OESTRUP) HUSTEDT (L.KALBE) LANGE-BERATALOT HASSALL

11.5 Artenlisten Zooplankton Seen 2013

Die Seen sind alphabetisch und die Taxa nach Großgruppen sortiert.

7	Behlende	orfer See, tiefste Stelle	
	DV	Taxon	Autor
	3923	Ciliata vagil n. det.	
	4002	Difflugia sp.	LECLERC
	3055	Epistylis sp.	(EHRENBERG)
	3955	Suctoria n.det.	
	3619	Tintinnopsis sp.	(STEIN)
	5953	Ascomorpha ovalis	(CARLIN)
	5926	Ascomorpha saltans	(BARTSCH)
	5098	Asplanchna priodonta	(GOSSE)
	5974	Collotheca sp.	(HARRING)
	5118	Conochilus unicornis	(ROUSSELET)
	5149	Filinia terminalis	(PLATE)
	5932	Gastropus stylifer	(IMHOF)
	5163	Kellicottia longispina	(KELLICOTT)
	5331	Keratella cochlearis	(GOSSE)
	5165	Keratella cochlearis tecta - Reihe	
	5647	Keratella hiemalis	(CARLIN)
	5166	Keratella quadrata	(O.F.MUELLER)
	5226	Lecane sp.	(BARTOS)
	5266	Lophocharis sp.	(EHRENBERG)
	5202	Polyarthra cf. dolichoptera	(IDELSON)
	15278	Polyarthra cf. major	(BURCKHARDT)
	5326	Polyarthra cf. remata	(SKORIKOV)
	5204	Polyarthra cf. vulgaris	(CARLIN)
	5234	Pompholyx sulcata	(HUDSON)
	5881	Synchaeta cf. pectinata	(EHRENBERG)
	5054	Synchaeta tremula oblonga lakowitziana Grp.	(EHRENERBG)
	5213	Trichocerca capucina	(WIERZEJSKI & ZACHARIAS)
	5919	Trichocerca pusilla	(LAUTERBORN)
	5654	Trichocerca rousseleti	(VOIGT)
	5917	Trichocerca similis	(WIERZEJSKI)
	5089	Acroperus harpae	(BAIRD)
	5099	Bosmina coregoni coregoni	(BAIRD)
	5100	Bosmina longirostris	(O.F.MUELLER)
	5116	Chydorus sphaericus	(O.F.MUELLER)
	5126	Daphnia cucullata	(SARS)
	5127	Daphnia galeata	(SARS)
	5136	Diaphanosoma brachyurum	(LIEVIN)
	5160	Leptodora kindtii	(FOCKE)
	5144	Eudiaptomus gracilis	(SARS)
	5134	Diacyclops bicuspidatus	(CLAUS)
	5175	Mesocyclops leuckarti	(CLAUS)
	5217	Thermocyclops crassus	(FISCHER)
	15284	Thermocyclops oithonoides	(SARS)
	5121	Cyclops abyssorum	(SARS)
	15335	Cyclops kolensis	(LILLJEBORG)
	5123	Cyclops vicinus	(ULJANIN)
	481	Chaoborus sp.	(LICHTENSTEIN)

120210	Rlankana	see tiefste Stelle	
129219		see, tiefste Stelle	Auton
	DV 4015	Taxon Arcella sp.	Autor
			(EHRENBERG)
	5098	Asplanchna priodonta	(GOSSE)
	5102	Brachionus angularis Conochilus unicornis	(GOSSE)
	5118		(ROUSSELET)
	5974	Collotheca sp.	(HARRING)
	5148	Filinia longiseta	(EHRENBERG)
	5149	Filinia terminalis	(PLATE)
	5154	Hexarthra mira	(HUDSON)
	5331	Keratella cochlearis	(GOSSE)
	5647	Keratella hiemalis	(CARLIN)
	5166	Keratella quadrata	(O.F.MUELLER)
	5225	Lecane sp.	(NITZSCH)
	5202	Polyarthra cf. dolichoptera	(IDELSON)
	5204	Polyarthra cf. vulgaris	(CARLIN)
	5958	Rotatoria indet.	
	5881	Synchaeta cf. pectinata	(EHRENBERG)
	5054	Synchaeta tremula oblonga lakowitziana Grp.	(EHRENERBG)
	5189	Trichocerca sp.	(LAMARCK)
	5057	Trichotria pocillum	(O.F.MUELLER)
	5936	Alona affinis	(LEYDIG)
	5947	Alona guttata	(SARS)
	5091	Alona rectangula	(SARS)
	5100	Bosmina longirostris	(O.F.MUELLER)
	5116	Chydorus sphaericus	(O.F.MUELLER)
	5126	Daphnia cucullata	(SARS)
	5127	Daphnia galeata	(SARS)
	5129	Daphnia longispina	(O.F.MUELLER)
	5146	Eudiaptomus vulgaris	(Schmeil)
	5088	Acanthocyclops robustus	(G.O.SARS)
	5122	Cyclops strenuus	(FISCHER)
	5142	Eucyclops serrulatus	(FISCHER)
	5175	Mesocyclops leuckarti	(CLAUS)
	481	Chaoborus sp.	(LICHTENSTEIN)
129081	Bothkam	iper See, tiefste Stelle	
12,001	DV	Taxon	Autor
	3923	Ciliata vagil n.det.	
	4002	Difflugia sp.	LECLERC
	3055	Epistylis sp.	(EHRENBERG)
	3619	Tintinnopsis sp.	(STEIN)
	5098	Asplanchna priodonta	(GOSSE)
	5102	Brachionus angularis	(GOSSE)
	5024	Brachionus calyciflorus	(PALLAS)
	15276	Brachionus diversicornis	(DADAY)
	5118	Conochilus unicornis	(ROUSSELET)
	5010	Euchlanis dilatata	(EHRENBERG)
	5149	Filinia terminalis	
			(PLATE)
	5163	Kellicottia longispina	(KELLICOTT)
	5331	Keratella cochlearis	(GOSSE)
	5165	Keratella cochl. var tecta	(GARIAN)
	5647	Keratella hiemalis	(CARLIN)

ĺ	5166	Keratella quadrata	(O.F.MUELLER)
	5202	Polyarthra cf. dolichoptera	(IDELSON)
	15278	Polyarthra cf. major	(BURCKHARDT)
	5204	Polyarthra cf. vulgaris	(CARLIN)
	5234	Pompholyx sulcata	(HUDSON)
	5054	Synchaeta tremula oblonga lakowitziana Grp.	(EHRENERBG)
	5919	Trichocerca pusilla	(LAUTERBORN)
	5189	Trichocerca sp.	(LAMARCK)
	5099	Eubosmina coregoni coregoni	(BAIRD)
	5100	Bosmina longirostris	(O.F.MUELLER)
	5111	Ceriodaphnia quadrangula	(O.F.MUELLER)
	5110	Ceriodaphnia pulchella	(SARS)
	5116	Chydorus sphaericus	(O.F.MUELLER)
	5126	Daphnia cucullata	(SARS)
	5127	Daphnia galeata	(SARS)
	5831	Daphnia x krausi	(FLOESSNER)
	5160	Leptodora kindtii	(FOCKE)
	5145	Eudiaptomus graciloides	
	5088	Acanthocyclops robustus	(LILLJEBORG)
	15335	Cyclops kolensis	(G.O.SARS)
		Cyclops vicinus Cyclops vicinus	(LILLJEBORG)
	5123	• 1	(ULJANIN)
	5175	Mesocyclops leuckarti	(CLAUS)
129004		iefste Stelle)	
	DV	Taxon	Autor
	4015	Arcella sp.	(EHRENBERG)
	3923	Ciliata vagil n.det.	
	3955	Suctoria n.det.	
	3619	Tintinnopsis sp.	(STEIN)
	5975	Anuraeopsis fissa	(GOSSE)
	5096	Ascomorpha ecaudis	(PERTY)
	5953	Ascomorpha ovalis	(CARLIN)
	5098	Asplanchna priodonta	(GOSSE)
	5974	Collotheca sp.	(HARRING)
	5031	Collurella sp.	(BORY DE SAINT VINCENT)
	5878	Conochilus natans	(SELIGO)
	5118	Conochilus unicornis	(ROUSSELET)
	5932	Gastropus stylifer	(IMHOF)
	5163	Kellicottia longispina	(KELLICOTT)
	5331	Keratella cochlearis	(GOSSE)
	5165	Keratella cochl. var tecta	
	5647	Keratella hiemalis	(CARLIN)
	5166	Keratella quadrata	(O.F.MUELLER)
	5226	Monostyla sp.	(BARTOS)
	5200	Ploesoma hudsoni	(IMHOF)
	5202	Polyarthra cf. dolichoptera	(IDELSON)
	15278	Polyarthra cf. major	(BURCKHARDT)
	5326	Polyarthra cf. remata	(SKORIKOV)
	5204	Polyarthra cf. vulgaris	(CARLIN)
	5234	Pompholyx sulcata	(HUDSON)
	5881	Synchaeta cf. pectinata	(EHRENBERG)
	5054	Synchaeta tremula oblonga lakowitziana Grp.	(EHRENERBG)
	5213	Trichocerca capucina	(WIERZEJSKI & ZACHARIAS)
	5654	Trichocerca rousseleti	(VOIGT)
	3034	THOROCOTCA TOUSSEIGH	[(vOlU1)

	5092	Alonella nana	(BAIRD)
	5099	Eubosmina coregoni coregoni	(BAIRD)
	5100	Bosmina longirostris	(O.F.MUELLER)
	5111	Ceriodaphnia quadrangula	(O.F.MUELLER)
	5110	Ceriodaphnia pulchella	(SARS)
	5116	Chydorus sphaericus	(O.F.MUELLER)
	5126	Daphnia cucullata	(SARS)
	5127	Daphnia galeata	(SARS)
	5136	Diaphanosoma brachyurum	(LIEVIN)
	5188	Simocephalus vetulus	(O.F.MUELLER)
	5144	Eudiaptomus gracilis	(SARS)
	5121	Cyclops abyssorum	(SARS)
	15335	Cyclops kolensis	(LILLJEBORG)
	5123	Cyclops vicinus	(ULJANIN)
	5142	Eucyclops serrulatus	(Fischer)
	5238	Ergasilus sp.	(Nordmann)
	5175	Mesocyclops leuckarti	(CLAUS)
		• •	(CLAUS)
129009	Dobersdo	rfer See, tiefste Stelle	
	DV	Taxon	Autor
	4015	Arcella sp.	(EHRENBERG)
	3923	Ciliata vagil n. det.	
	4002	Difflugia sp.	LECLERC
	3055	Epistylis sp.	(EHRENBERG)
	3619	Tintinnopsis sp.	(STEIN)
	5096	Ascomorpha ecaudis	(PERTY)
	5953	Ascomorpha ovalis	(CARLIN)
	5098	Asplanchna priodonta	(GOSSE)
	5102	Brachionus angularis	(GOSSE)
	5974	Collotheca sp.	(HARRING)
	5878	Conochilus natans	(SELIGO)
	5118	Conochilus unicornis	(ROUSSELET)
	5149	Filinia terminalis	(PLATE)
	5932	Gastropus stylifer	(IMHOF)
	5163	Kellicottia longispina	(KELLICOTT)
	5331	Keratella cochlearis	(GOSSE)
	5165	Keratella cochl. var tecta	
	5647	Keratella hiemalis	(CARLIN)
	5166	Keratella quadrata	(O.F.MUELLER)
	5202	Polyarthra cf. dolichoptera	(IDELSON)
	15278	Polyarthra cf. major	(BURCKHARDT)
	5326	Polyarthra cf. remata	(SKORIKOV)
	5204	Polyarthra cf. vulgaris	(CARLIN)
	5234	Pompholyx sulcata	(HUDSON)
	5881	Synchaeta cf. pectinata	(EHRENBERG)
	5054	Synchaeta tremula oblonga lakowitziana Grp.	(EHRENERBG)
	5213	Trichocerca capucina	(WIERZEJSKI & ZACHARIAS)
	5919	Trichocerca pusilla	(LAUTERBORN)
	5654	Trichocerca rousseleti	(VOIGT)
	5917	Trichocerca similis	(WIERZEJSKI)
	5189	Trichocerca sp.	(LAMARCK)
	5057	Trichotria pocillum	(O.F.MUELLER)
	5091	Alona rectangula	(SARS)
	5100	Bosmina longirostris	(O.F.MUELLER)
	1		

	5099	Eubosmina coregoni thersites	(POPPE)
	5111	Ceriodaphnia quadrangula	(O.F.MUELLER)
	5116	Chydorus sphaericus	(O.F.MUELLER)
	5126	Daphnia cucullata	(SARS)
	5127	Daphnia galeata	(SARS)
	5136	Diaphanosoma brachyurum	(LIEVIN)
	5160	Leptodora kindtii	(FOCKE)
	5145	Eudiaptomus graciloides	(LILLJEBORG)
	5088	Acanthocyclops robustus	(G.O.SARS)
	5121	Cyclops abyssorum	(SARS)
	15335	Cyclops kolensis	(LILLJEBORG)
	5123	Cyclops vicinus	(ULJANIN)
	5142	Eucyclops serrulatus	(Fischer)
	5175	Mesocyclops leuckarti	(CLAUS)
	5217	Thermocyclops crassus	(FISCHER)
	15284	Thermocyclops oithonoides	(SARS)
	1097	Dreissena cf. polymorpha	(PALLAS)
	481	Chaoborus sp.	(LICHTENSTEIN)
120002		e, tiefste Stelle	(Eleli Elli)
129002			
	DV 3923	Taxon Cilista annil n. dat	Autor
		Ciliata vagil n.det.	(DED TIV)
	5096	Ascomorpha ecaudis	(PERTY)
	5953	Ascomorpha ovalis	(CARLIN)
	5926	Ascomorpha saltans	(BARTSCH)
	5098	Asplanchna priodonta	(GOSSE)
	5974	Collotheca sp.	(HARRING)
	5010	Euchlanis dilatata	(EHRENBERG)
	5148	Filinia longiseta	(EHRENBERG)
	5149	Filinia terminalis	(PLATE)
	KDV	Gastropus hyptopus	(EHRENBERG)
	5163	Kellicottia longispina	(KELLICOTT)
	5331	Keratella cochlearis	(GOSSE)
	5647	Keratella hiemalis	(CARLIN)
	5166	Keratella quadrata	(O.F.MUELLER)
	5225	Lecane sp.	(NITZSCH)
	5202	Polyarthra cf. dolichoptera	(IDELSON)
	5204	Polyarthra cf. vulgaris	(CARLIN)
	5234	Pompholyx sulcata	(HUDSON)
	5054	Synchaeta tremula oblonga lakowitziana Grp.	(EHRENERBG)
	5654	Trichocerca rousseleti	(VOIGT)
	5917	Trichocerca similis	(WIERZEJSKI)
	5100	Bosmina longirostris	(O.F.MUELLER)
	5111	Ceriodaphnia quadrangula	(O.F.MUELLER)
	5110	Ceriodaphnia pulchella	(SARS)
	5127	Daphnia galeata	(SARS)
<u> </u>	5874	Daphnia cf. galeata/hyalina	(FLOESSNER)
	5128	Daphnia hyalina	(LEYDIG)
<u> </u>	5136	Diaphanosoma brachyurum	(LIEVIN)
	5160	Leptodora kindtii	(FOCKE)
	5144	Eudiaptomus gracilis	(SARS)
	5121	Cyclops abyssorum	(SARS)
	15335	Cyclops kolensis	(LILLJEBORG)
	5123	Cyclops vicinus	(ULJANIN)

	5941	Macrocyclops albidus	(JURINE)
	5175	Mesocyclops leuckarti	(CLAUS)
	15284	Thermocyclops oithonoides	(SARS)
	5941	Macrocyclops albidus	(JURINE)
	481	Chaoborus sp.	(LICHTENSTEIN)
129172	Gr. Binne	nsee, tiefste Stelle	
	DV	Taxon	Autor
	4162	Arcella discoides	EHRENBERG
	4133	Arcella hemisphaerica	PERTY
	4015	Arcella sp.	EHRENBERG
	4056	Centropyxis sp.	F.STEIN
	3923	Ciliata vagil n.det.	
	3167	Tintinnopsis sp.	(LEIDY) IMHOF
	5098	Asplanchna priodonta	(GOSSE)
	5102	Brachionus angularis	(GOSSE)
	5024	Brachionus calyciflorus	(PALLAS)
	15276	Brachionus diversicornis	DADAY
	5026	Brachionus urceolaris	(O.F.MUELLER)
	5148	Filinia longiseta	(EHRENBERG)
	5149	Filinia terminalis	(PLATE)
	5163	Kellicottia longispina	(KELLICOTT)
	5331	Keratella cochlearis	(GOSSE)
	5165	Keratella cochlearis var. tecta	
	5166	Keratella quadrata	(O.F.MUELLER)
	5038	Lecane sp.	NITZSCH
	5202	Polyarthra dolichoptera	(IDELSON)
	15278	Polyarthra major	BURCKHARDT
	5326	Polyarthra remata	(SKORIKOV)
	5204	Polyarthra vulgaris	(CARLIN)
	5234	Pompholyx sulcata	(HUDSON)
	5881	Synchaeta pectinata	(EHRENBERG)
		Synchaeta sp.	EHRENERBG
	5919	Trichocerca pusilla	(LAUTERBORN)
	5917	Trichocerca similis	(WIERZEJSKI)
	5189	Trichocerca sp.	LAMARCK
	1097	1 7 1 \ 5 /	(PALLAS)
	5100		(O.F.MUELLER)
	5116	•	(O.F.MUELLER)
	5126	1	SARS
	5127	1 5	SARS
		Leptodora kindti	(FOCKE)
		Acanthocyclops robustus	(G.O.SARS)
	15335	* *	LILLJEBORG
	5123	* 1	ULJANIN
	5134	7 1 1	(CLAUS)
	5144	1 6	(G.O.SARS)
		Mesocyclops leuckarti	(CLAUS)
10-1		Thermocyclops oithonoides	G.O.SARS
129102		r See, Südteil, tiefste Stelle	
	DV 2022	Taxon	Autor
	3923	Ciliata vagil n.det.	LECLEDO
	4002	Difflugia sp.	LECLERC
	4988	Heliozoa n.det.	

1	3619	Tinting angie an	(STEIN)
		Tintinnopsis sp. Ascomorpha ecaudis	,
	5096		(PERTY)
	5953	Ascomorpha ovalis	(CARLIN)
	5926	Ascomorpha saltans	(BARTSCH)
	5098	Asplanchna priodonta	(GOSSE)
	5102	Brachionus angularis	(GOSSE)
	15276	Brachionus diversicornis	(DADAY
	5974	Collotheca sp.	(HARRING)
	5878	Conochilus natans	(SELIGO)
	5118	Conochilus unicornis	(ROUSSELET)
	5010	Euchlanis dilatata	(EHRENBERG)
	5148	Filinia longiseta	(EHRENBERG)
	5149	Filinia terminalis	(PLATE)
	5163	Kellicottia longispina	(KELLICOTT)
	5331	Keratella cochlearis	(GOSSE)
	5165	Keratella cochl. var tecta	
	5647	Keratella hiemalis	(CARLIN)
	5166	Keratella quadrata	(O.F.MUELLER)
	5045	Notholca squamula	(O.F.MUELLER)
	5200	Ploesoma hudsoni	(IMHOF)
	5202	Polyarthra cf. dolichoptera	(IDELSON)
	15278	Polyarthra cf. major	(BURCKHARDT)
	5326	Polyarthra cf. remata	(SKORIKOV)
	5204	Polyarthra cf. vulgaris	(CARLIN)
	5234	Pompholyx sulcata	(HUDSON)
	5881	Synchaeta cf. pectinata	(EHRENBERG)
	5054	Synchaeta tremula oblonga lakowitziana Grp.	(EHRENERBG)
	5213	Trichocerca capucina	(WIERZEJSKI & ZACHARIAS)
		Trichocerca cf. inermis	(LAMARCK)
Ī	5189		
	5189 5099		, , , , , , , , , , , , , , , , , , ,
	5099	Eubosmina coregoni coregoni	(BAIRD)
	5099 5100	Eubosmina coregoni coregoni Bosmina longirostris	(BAIRD) (O.F.MUELLER)
	5099 5100 5111	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula	(BAIRD) (O.F.MUELLER) (O.F.MUELLER)
	5099 5100 5111 5116	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER)
	5099 5100 5111 5116 5126	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS)
	5099 5100 5111 5116 5126 5127	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS)
	5099 5100 5111 5116 5126 5127 5831	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER)
	5099 5100 5111 5116 5126 5127 5831 5160	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE)
	5099 5100 5111 5116 5126 5127 5831 5160 5144	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS)
	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG)
	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS)
	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS)
	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335 5123	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis Cyclops vicinus	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS) (LILLJEBORG) (ULJANIN)
	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335 5123 5134	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis Cyclops vicinus Diacyclops bicuspidatus	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS) (LILLJEBORG) (ULJANIN) (CLAUS)
	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335 5123 5134 5175	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis Cyclops vicinus Diacyclops bicuspidatus Mesocyclops leuckarti	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS) (LILLJEBORG) (ULJANIN) (CLAUS)
	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335 5123 5134 5175 15284	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis Cyclops vicinus Diacyclops bicuspidatus Mesocyclops leuckarti Thermocyclops oithonoides	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS) (LILLJEBORG) (ULJANIN) (CLAUS) (CLAUS) (SARS)
	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335 5123 5134 5175 15284 481	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis Cyclops vicinus Diacyclops bicuspidatus Mesocyclops leuckarti Thermocyclops oithonoides Chaoborus sp.	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS) (LILLJEBORG) (ULJANIN) (CLAUS) (CLAUS) (SARS) (LICHTENSTEIN)
	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335 5123 5134 5175 15284 481 1097	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis Cyclops vicinus Diacyclops bicuspidatus Mesocyclops leuckarti Thermocyclops oithonoides Chaoborus sp. Dreissena cf. polymorpha	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS) (LILLJEBORG) (ULJANIN) (CLAUS) (CLAUS) (SARS)
129008	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335 5123 5134 5175 15284 481 1097	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis Cyclops vicinus Diacyclops bicuspidatus Mesocyclops leuckarti Thermocyclops oithonoides Chaoborus sp.	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS) (LILLJEBORG) (ULJANIN) (CLAUS) (CLAUS) (SARS) (LICHTENSTEIN)
129008	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335 5123 5134 5175 15284 481 1097	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis Cyclops vicinus Diacyclops bicuspidatus Mesocyclops leuckarti Thermocyclops oithonoides Chaoborus sp. Dreissena cf. polymorpha	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS) (LILLJEBORG) (ULJANIN) (CLAUS) (CLAUS) (SARS) (LICHTENSTEIN)
129008	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335 5123 5134 5175 15284 481 1097 Gr. Segeb	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis Cyclops vicinus Diacyclops bicuspidatus Mesocyclops leuckarti Thermocyclops oithonoides Chaoborus sp. Dreissena cf. polymorpha	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS) (LILLJEBORG) (ULJANIN) (CLAUS) (CLAUS) (SARS) (LICHTENSTEIN) (PALLAS)
129008	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335 5123 5134 5175 15284 481 1097 Gr. Segeb	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis Cyclops vicinus Diacyclops bicuspidatus Mesocyclops leuckarti Thermocyclops oithonoides Chaoborus sp. Dreissena cf. polymorpha	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS) (LILLJEBORG) (ULJANIN) (CLAUS) (CLAUS) (SARS) (LICHTENSTEIN) (PALLAS)
129008	5099 5100 5111 5116 5126 5127 5831 5160 5144 5145 5121 15335 5123 5134 5175 15284 481 1097 Gr. Segeb DV 4015	Eubosmina coregoni coregoni Bosmina longirostris Ceriodaphnia quadrangula Chydorus sphaericus Daphnia cucullata Daphnia galeata Daphnia x krausi Leptodora kindtii Eudiaptomus gracilis Eudiaptomus graciloides Cyclops abyssorum Cyclops kolensis Cyclops vicinus Diacyclops bicuspidatus Mesocyclops leuckarti Thermocyclops oithonoides Chaoborus sp. Dreissena cf. polymorpha erger See, tiefste Stelle Taxon Arcella sp.	(BAIRD) (O.F.MUELLER) (O.F.MUELLER) (O.F.MUELLER) (SARS) (SARS) (FLOESSNER) (FOCKE) (SARS) (LILLJEBORG) (SARS) (LILLJEBORG) (ULJANIN) (CLAUS) (CLAUS) (SARS) (LICHTENSTEIN) (PALLAS)

	3955	Suctoria n.det.	
	3619	Tintinnopsis sp.	(STEIN)
	5096	Ascomorpha ecaudis	(PERTY)
	5953	Ascomorpha ovalis	(CARLIN)
	5098	Asplanchna priodonta	(GOSSE)
	5250	Conochilus cf. hippocrepis	(SCHRANK)
	5118	Conochilus unicornis	(ROUSSELET)
	5148	Filinia longiseta	(EHRENBERG)
	5163	Kellicottia longispina	(KELLICOTT)
	5331	Keratella cochlearis	(GOSSE)
	5165	Keratella cochl. var tecta	
	5647	Keratella hiemalis	(CARLIN)
	5166	Keratella quadrata	(O.F.MUELLER)
	5045	Notholca squamula	(O.F.MUELLER)
	5148	Filinia longiseta	(EHRENBERG)
	5202	Polyarthra cf. dolichoptera	(IDELSON)
	15278	Polyarthra cf. major	(BURCKHARDT)
	5326	Polyarthra cf. remata	(SKORIKOV)
	5204	Polyarthra cf. vulgaris	(CARLIN)
	5234	Pompholyx sulcata	(HUDSON)
	5881	Synchaeta cf. pectinata	(EHRENBERG)
	5054	Synchaeta tremula oblonga lakowitziana Grp.	(EHRENERBG)
	5213	Trichocerca capucina	(WIERZEJSKI & ZACHARIAS)
	5189	Trichocerca cf. inermis	(LAMARCK)
	5099	Eubosmina coregoni coregoni	(BAIRD)
	5099	Eubosmina coregoni thersites	(POPPE)
	5100	Bosmina longirostris	(O.F.MUELLER)
	5111	Ceriodaphnia quadrangula	(O.F.MUELLER)
	5126	Daphnia cucullata	(SARS)
	5127	Daphnia galeata	(SARS)
	5831	Daphnia x krausi	(FLOESSNER)
	5160	Leptodora kindtii	(FOCKE)
	5144	Eudiaptomus gracilis	(SARS)
	5121	Cyclops abyssorum	(SARS)
	15335	Cyclops kolensis	(LILLJEBORG)
	5123	Cyclops vicinus	(ULJANIN)
	5175	Mesocyclops leuckarti	(CLAUS)
	15284	Thermocyclops oithonoides	(SARS)
	1097	Dreissena cf. polymorpha	~ ~ /
129052	Ihlsee, tie	1 7 1	
	DV	Taxon	Autor
	4015	Arcella sp.	(EHRENBERG)
	3923	Ciliata vagil n.det.	,
	3955	Suctoria n.det.	
	5096	Ascomorpha ecaudis	(PERTY)
	5953	Ascomorpha ovalis	(CARLIN)
	5926	Ascomorpha saltans	(BARTSCH)
	5098	Asplanchna priodonta	(GOSSE)
	5974	Collotheca sp.	(HARRING)
	5250	Conochilus hippocrepis	(SCHRANK)
	5878	Conochilus natans	(SELIGO)
	5118	Conochilus unicornis	(ROUSSELET)
	5010	Euchlanis dilatata	(EHRENBERG)
<u> </u>	2010	Euvinanio anatata	(LIMLINDLING)

	5148	Filinia longiseta	(EHRENBERG)
	5149	Filinia terminalis	(PLATE)
	5932	Gastropus stylifer	(IMHOF)
	5163	Kellicottia longispina	(KELLICOTT)
	5331	Keratella cochlearis	(GOSSE)
	5647	Keratella hiemalis	(CARLIN)
	5166	Keratella quadrata	(O.F.MUELLER)
	5225	Lecane cf. bulla	(NITZSCH)
	5226	Monostyla sp.	(BARTOS)
	5200	Ploesoma hudsoni	(IMHOF)
	5202	Polyarthra cf. dolichoptera	(IDELSON)
	15278	Polyarthra cf. major	(BURCKHARDT)
	5326	Polyarthra cf. remata	(SKORIKOV)
	5204	Polyarthra cf. vulgaris	(CARLIN)
	5881	Synchaeta cf. pectinata	(EHRENBERG)
	5054	Synchaeta tremula oblonga lakowitziana Grp.	(EHRENERBG)
	5213	Trichocerca capucina	(WIERZEJSKI & ZACHARIAS)
	5917	Trichocerca similis	(WIERZEJSKI)
	5654	Trichocerca rousseleti	(VOIGT)
	5099	Eubosmina coregoni coregoni	(BAIRD)
	5100	Bosmina longirostris	(O.F.MUELLER)
	5111	Ceriodaphnia quadrangula	(O.F.MUELLER)
	5116	Chydorus sphaericus	(O.F.MUELLER)
	5127	Daphnia galeata	(SARS)
	5874	Daphnia cf. galeata/hyalina	(FLOESSNER)
	5136	Diaphanosoma brachyurum	(LIEVIN)
	5160	Leptodora kindtii	(FOCKE)
	5144	Eudiaptomus gracilis	(SARS)
	5121	Cyclops abyssorum	(SARS)
	15335	Cyclops kolensis	(LILLJEBORG)
	5123	Cyclops vicinus	(ULJANIN)
	5175	Mesocyclops leuckarti	(CLAUS)
	15284	Thermocyclops oithonoides	(SARS)
	481	Chaoborus sp.	(LICHTENSTEIN)
129160	Neversdo	rfer See	
	DV	Taxon	Autor
	4056	Centropyxis sp.	F.STEIN
	4002	Difflugia sp.	LECLERC
	3923	Ciliata vagil n.det.	
	3167	Tintinnopsis sp.	(LEIDY) IMHOF
	5098	Asplanchna priodonta	(GOSSE)
	5102	Brachionus angularis	GOSSE
	5259	Brachionus angularis bidens	(PLATE)
	5024	Brachionus calyciflorus	(PALLAS)
	5118	Conochilus unicornis	(ROUSSELET)
	5163	Kellicottia longispina	(KELLICOTT)
	5331	Keratella cochlearis	(GOSSE)
	5933	Keratella cochlearis var. hispida	
	5165	Keratella cochlearis var. tecta	
	5647	Keratella hiemalis	(CARLI)
	5166	Keratella quadrata	(O.F.MUELLER)
	5038	Lecane sp.	NITZSCH
	5650	Notholca labis	(GOSSE)

	5202	Polyarthra dolichoptera	(IDELSON)
	5326	Polyarthra remata	(SKORIKOV)
	5204	Polyarthra vulgaris	(CARLIN)
	5234	Pompholyx sulcata	(HUDSON)
	5054	Synchaeta sp.	EHRENERBG
	5213	Trichocerca capucina	WIERZEJSKI & ZACHARIAS
	5917	Trichocerca similis	(WIERZEJSKI)
	5831	Daphnia x krausi	(FLOESSNER)
	5126	Daphnia cucullata	SARS
	5127	Daphnia galeata	SARS
	5128	Daphnia hyalina	LEYDIG
	5136	Diaphanosoma brachyurum	(LIEVIN)
	5160	Leptodora kindtii	(FOCKE)
	5088	Acanthocyclops robustus	(G.O.SARS)
	5121	Cyclops abyssorum	(SARS)
	15335	Cyclops kolensis	(LILLJEBORG)
	5123	Cyclops vicinus	ULJANIN
	5145	Eudiaptomus graciloides	(LILLJEBORG)
	5175	Mesocyclops leuckarti	(CLAUS)
	744	Chaoborus flavicans	(MEIGEN)
			(MDF6ELV)
129063		iefste Stelle	
	DV	Taxon	Autor
	4015	Arcella sp.	(EHRENBERG)
	3923	Ciliata vagil n.det.	
	5102	Brachionus angularis	(GOSSE)
	5250	Conochilus cf. hippocrepis	(SCHRANK)
	5154	Hexarthra mira	(HUDSON)
	5331	Keratella cochlearis	(GOSSE)
	5165	Keratella cochl. var tecta	
	5647	Keratella hiemalis	(CARLIN)
	5166	Keratella quadrata	(O.F.MUELLER)
	5264	Keratella valga	(EHRENBERG)
	5202	Polyarthra cf. dolichoptera	(IDELSON)
	5326	Polyarthra cf. remata	(SKORIKOV)
	5234	Pompholyx sulcata	(HUDSON)
	5054	Synchaeta tremula oblonga lakowitziana Grp.	(EHRENERBG)
	5213	Trichocerca capucina	(WIERZEJSKI & ZACHARIAS)
	5099	Eubosmina coregoni coregoni	(BAIRD)
	5100	Bosmina longirostris	(O.F.MUELLER)
	5111	Ceriodaphnia quadrangula	(O.F.MUELLER)
	5126	Daphnia cucullata	(SARS)
	5127	Daphnia galeata	(SARS)
	5145	Eudiaptomus graciloides	(LILLJEBORG)
	5122	Cyclops strenuus	(FISCHER)
	15284	Thermocyclops oithonoides	(SARS)
	481	Chaoborus sp.	(LICHTENSTEIN)
129192		tiefste Stelle	
	DV	Taxon	Autor
	4002	Difflugia sp.	LECLERC
	3055	Epistylis sp.	(EHRENBERG)
	3619	Tintinnopsis sp.	(STEIN)
	5975	Anuraeopsis fissa	(GOSSE)

	5953	Ascomorpha ovalis	(CARLIN)
	5926	Ascomorpha saltans	(BARTSCH)
	5098	Asplanchna priodonta	(GOSSE)
	15276	Brachionus diversicornis	(DADAY)
	5974	Collotheca sp.	(HARRING)
	5118	Conochilus unicornis	(ROUSSELET)
	5148	Filinia longiseta	(EHRENBERG)
	5149	Filinia terminalis	(PLATE)
	5932	Gastropus stylifer	(IMHOF)
	5163	Kellicottia longispina	(KELLICOTT)
	5331	Keratella cochlearis	(GOSSE)
	5165	Keratella cochl. var tecta	
	5647	Keratella hiemalis	(CARLIN)
	5166	Keratella quadrata	(O.F.MUELLER)
	5202	Polyarthra cf. dolichoptera	(IDELSON)
	5326	Polyarthra cf. remata	(SKORIKOV)
	5204	Polyarthra cf. vulgaris	(CARLIN)
	5234	Pompholyx sulcata	(HUDSON)
	5213	Trichocerca capucina	(WIERZEJSKI & ZACHARIAS)
	5919	Trichocerca pusilla	(LAUTERBORN)
	5917	Trichocerca similis	(WIERZEJSKI)
	5099	Eubosmina coregoni coregoni	(BAIRD)
	5100	Bosmina longirostris	(O.F.MUELLER)
	5116	Chydorus sphaericus	(O.F.MUELLER)
	5126	Daphnia cucullata	(SARS)
	5127	Daphnia galeata	(SARS)
	5874	Daphnia galeata/hyalina	(FLOESSNER)
	5831	Daphnia x krausi	(FLOESSNER)
	5136	Diaphanosoma brachyurum	(LIEVIN)
	5160	Leptodora kindtii	(FOCKE)
	5188	Simocephalus vetulus	(O.F.MUELLER)
	5144	Eudiaptomus gracilis	(SARS)
	5145	Eudiaptomus graciloides	(LILLJEBORG)
	5088	Acanthocyclops robustus	(G.O.SARS)
	5121	Cyclops abyssorum	(SARS)
	15335	Cyclops kolensis	(LILLJEBORG)
	5123	Cyclops vicinus	(ULJANIN)
	5134	Diacyclops bicuspidatus	(CLAUS)
	5175	Mesocyclops leuckarti	(CLAUS)
	5217	Thermocyclops crassus	(FISCHER)
	15284	Thermocyclops oithonoides	(SARS)
	481	Chaoborus sp.	(LICHTENSTEIN)
129050	Vierer Sec	e, tiefste Stelle	
127030	DV	Taxon	Autor
	3923	Ciliata vagil n.det.	Trutor
	4002	Difflugia sp.	LECLERC
	3055	Epistylis sp.	(EHRENBERG)
	4988	Heliozoa n.det.	(
	3955	Suctoria n.det.	
	3619	Tintinnopsis sp.	(STEIN)
	5096	Ascomorpha ecaudis	(PERTY)
	5098	Asplanchna priodonta	(GOSSE)
	5102	Brachionus angularis	(GOSSE)
		1	(/

Juli 2014

15276	Brachionus diversicornis	(DADAY)
5031	Collurella sp.	(BORY DE SAINT VINCENT)
5878	Conochilus natans	(SELIGO)
5118	Conochilus unicornis	(ROUSSELET)
5010	Euchlanis dilatata	(EHRENBERG)
5148	Filinia longiseta	(EHRENBERG)
5149	Filinia terminalis	(PLATE)
5045	Notholca squamula	(O.F.MUELLER)
5163	Kellicottia longispina	(KELLICOTT)
5331	Keratella cochlearis	(GOSSE)
5165	Keratella cochl. var tecta	
5647	Keratella hiemalis	(CARLIN)
5166	Keratella quadrata	(O.F.MUELLER)
5202	Polyarthra cf. dolichoptera	(IDELSON)
15278	Polyarthra cf. major	(BURCKHARDT)
5326	Polyarthra cf. remata	(SKORIKOV)
5204	Polyarthra cf. vulgaris	(CARLIN)
5881	Synchaeta cf. pectinata	(EHRENBERG)
5054	Synchaeta tremula oblonga lakowitziana Grp.	(EHRENERBG)
5213	Trichocerca capucina	(WIERZEJSKI & ZACHARIAS)
5189	Trichocerca sp.	(LAMARCK)
5099	Eubosmina coregoni coregoni	(BAIRD)
5100	Bosmina longirostris	(O.F.MUELLER)
5111	Ceriodaphnia quadrangula	(O.F.MUELLER)
5116	Chydorus sphaericus	(O.F.MUELLER)
5126	Daphnia cucullata	(SARS)
5127	Daphnia galeata	(SARS)
5160	Leptodora kindtii	(FOCKE)
5145	Eudiaptomus graciloides	(LILLJEBORG)
5121	Cyclops abyssorum	(SARS)
15335	Cyclops kolensis	(LILLJEBORG)
5123	Cyclops vicinus	(ULJANIN)
5134	Diacyclops bicuspidatus	(CLAUS)
5175	Mesocyclops leuckarti	(CLAUS)
15284	Thermocyclops oithonoides	(SARS)
481	Chaoborus sp.	(LICHTENSTEIN)
1097	Dreissena cf. polymorpha	(PALLAS)